2015 Advanced Lithography:
Measuring Aberrations using EUV Mask Roughness

Rene Claus
Markus Benk, Antoine Wojdyla, Alex Donoghue,
David Johnson, Kenneth Goldberg, Andrew Neureuther,
Patrick Naulleau, and Laura Waller
Aberrations change the results from an EUV actinic inspection system
 – Want to measure aberrations
 – Want to measure from images directly
• Could use a programmed object (ex: contact array)
• We present a way to use existing mask roughness
 – Aberrations can be measured on any mask
Measuring Aberrations

- Unknown test object
 - Calculate object from model + measurements
- Unknown aberrations
- Minimize residual error by guessing different aberrations
New Phase Retrieval Algorithm

Arbitrary Pupil (Aberrations) + Arbitrary Source (partial coherence)

Aerial Image Measurements (focus series)

Quantitative Phase & Amplitude

More details in:
Weak Object Assumption

- Consider a rough mirror (or mask)
 - Most of the light is reflected
 - Some of the light is scattered
- The electric field leaving the mask can be expressed as the sum of these components
 \[E = 1 + E_s \]
 \[I = |1 + E_s|^2 = 1 + 2Re\{E_s\} + |E_s|^2 \]
- For most objects \(Scattering \ll DC \)
 - We can ignore \(Scattering-Scattering \)
Recovering the Field

Write the intensity as a sum of convolutions:

\[
I = 1 + E_{re} \ast K_{re} + E_{im} \ast K_{im} + \mathcal{O}(|E_s|^2)
\]

\[
\tilde{I} = 1 + \vec{E}_{re} \cdot \vec{K}_{re} + \vec{E}_{im} \cdot \vec{K}_{im}
\]

Transfer functions:

\[
\vec{K}_{re} = (P \cdot L) \ast P + P \ast (P \cdot L)
\]

\[
\vec{K}_{im} = (P \cdot L) \ast P - P \ast (P \cdot L)
\]

More details in:
Aberration and Coherent Imaging

- Under coherent illumination, the object & aberrations are not linearly independent
- Partial coherence can solve the problem

\[I = |E_1 \ast P_1|^2 \]

\[I = |E_2 \ast P_2|^2 \]
Partial Coherence Improves Sensitivity

Simulated 21 through-focus images of speckle with astigmatism:

- Model Astigmatism
- Residual Error
- Coherent
 \[\sigma = 0.2 \]
 \[\sigma = 0.5 \]

- Partial Coherence Improves Sensitivity

Assumed Astigmatism (waves)

Residual Error
SEMATECH Berkeley SHARP

- Actinic mask inspection system at LBNL
- Zone plate lens as objective
 - Less expensive than multilayer optics
 - Easy to test different lenses
 - Single lens system
 - Strong field dependent aberrations
 - Aberrations vary with focus
Aberrations Vary With Focus

Object moves with focus

Aberration is not constant with focus

RMS Aberration (milli waves)

Focus (μm)

Astigmatism

Coma

Defocus: -2757 nm
• Instead of modeling aberrations at each position we model the zone plate
 – rotation of zone plate
 – position of zone plate
 – illumination angle
• Calculate aberrations using ray tracing
• Consider physical measurement
 – “Zone plate was moved 500nm up per image”
 – Captures how aberrations change in each image
 – Captures how object moves
• Fewer parameters to optimize
Calibrating the Zone Plate

Illumination: $\sigma = 0.25$, monopole

Examine small areas → aberrations are approx constant

• Where is the center of the field?
• What is the tip/tilt of the zone plate?

Wasn’t able to automatically optimize the parameters
• Small stage drift
• Field dependent illumination

Guessed good parameters
Reduced Residual

Sample Measurement → Zone Plate Pupil

Simulated Measurement

Residual Error (Δ)

Ideal Pupil (considers only defocus)
Reduced Residual

Zone Plate Pupil

Sample Measurement

Ideal Pupil (considers only defocus)

Simulated Measurement

Residual Error (Δ)

aberration error
Improved Results with ZP Model

Ideal pupil fits “average aberration” → fits best at center of the stack
Uncorrected Aberrations Affect the Object

Recovered Object:

Zone Plate Pupil

Ideal Pupil

Amplitude

Phase
Uncorrected Aberrations Affect the Object

Recovered Object:

Amplitude

remaining aberration

Phase

remaining aberration
Conclusion

- Presented new algorithm to measure aberrations
 - Unknown test object (ex: EUV mask roughness)
 - Use partial coherence to improve sensitivity
- Used a physical model for the zone plate on SHARP
 - Removed zone plate aberrations
 - Recovered field from aberrated images
Acknowledgement

IMPACT+

integrated modeling process and computation for technology

CXRO

THE CENTER FOR X-RAY OPTICS

BERKELEY LAB

Berkeley UNIVERSITY OF CALIFORNIA
Thank you for your attention!

reneclaus@gmail.com
Questions?

reneclaus@gmail.com