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The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging
is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination.
For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent
algorithm. However, this modeling increases the computation time due to the complexity of partially coherent
imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorpo-
rate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration,
the extended algorithm is applied to retrieve a field-dependent wavefront of a microscope operated at extreme
ultraviolet wavelength (13.4 nm). The retrievedwavefront qualitatively matches the expected characteristics of the
lens design. © 2014 Optical Society of America

OCIS codes: (100.5070) Phase retrieval; (110.0180) Microscopy; (110.2990) Image formation theory;
(110.4980) Partial coherence in imaging; (110.7440) X-ray imaging; (260.7200) Ultraviolet, extreme.
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1. INTRODUCTION
The phase retrieval approach reconstructs the wavefront of
an imaging system from image intensity measurements
alone [1,2]. Usually, the input consists of a series of
through-focus images since the evolution of the intensity
through focus depends on the wavefront. To perform the
phase retrieval, all we need is an image-capturing device. Ex-
ternal phase measurement systems, such as Shack–Hartman
test systems [3] or interferometry [4,5], are not required.
Therefore, phase retrieval is compatible with quick wavefront
measurement for instrumentation calibration and alignment
[1]. This technique can be especially useful in fields in
which independent wavefront measurements are difficult
to achieve. Such is the case with optical systems operating
in the extreme ultraviolet (EUV) wavelength range, where
calibrated null lenses and optical systems of sufficient
accuracy are unavailable.

The SEMATECH-Berkeley actinic inspection tool (AIT) is
an EUVmicroscope developed at Lawrence Berkeley National
Laboratory (LBNL) [6,7]. Similar to other digital microscopes,
the AIT consists of imaging optics (Fresnel zone plate) and a
charge coupled device (CCD) camera to capture the image
of the object that is illuminated by partially coherent source.
Accurate measurement of the wavefront provides reliable
feedback to perform the alignment of the AIT, allowing us
to achieve diffraction-limited imaging performance. Phase
retrieval is perhaps the best method to measure the AIT wave-
front since it does not require any customization of the micro-
scope’s optical system.

Here we review existing phase retrieval methods to see
which one can be applied most effectively to the AIT, or more
generally, to any digital microscope. Properly modeling the
illumination coherence properties and the object transmit-
tance are important components of the phase retrieval proc-
ess. However, adding partial coherence is not straightforward
and is currently the subject of active research. For example,
researchers have studied how to incorporate such effects into
the Gerchberg–Saxton algorithm [8,9], the curvature sensing
method [10], the transport of intensity equation [11], and
phase retrieval by the extended Nijboer–Zernike theory
[12]. Although the extended Nijboer–Zernike theory can incor-
porate the coherence properties and the object transmittance
[12], solving the inverse problem is not simple. Therefore,
next, we consider combining the partially coherent imaging
calculation and a numerical optimization method. Repeating
the partially coherent imaging calculation while changing the
Zernike coefficients of the wavefront allows us to estimate the
Zernike coefficients from a series of through-focus images
[7,13]. Although this optimization is computationally demand-
ing, a simulated annealing algorithm combined with the eigen-
function decomposition of the image significantly reduced the
computational burden [14]. This method yields a set of
Zernike coefficients, not a two-dimensional map of the wave-
front. Furthermore, only a finite subset of the Zernike coeffi-
cients is estimated in this method, and higher-order Zernike
terms are not recovered.

In this paper, we combine the gradient descent algorithm
[2] and partially coherent imaging simulations to retrieve
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not the Zernike coefficients but the two-dimensional wave-
front map of the AIT lens. In most cases the gradient descent
method is used with coherent or incoherent illumination [1];
therefore the incorporation of partially coherent imaging
is the first step of this paper. After the incorporation, the gra-
dient descent algorithm is accelerated by combining the
fast Fourier transform (FFT) and the eigenfunction decompo-
sition of the image [14,15]. The simulation speed of the image
calculation by eigenfunction decomposition depends on the
object characteristics. The retrieved wavefront accuracy also
depends on the object. We show that the smaller the object is,
the more the image calculation is accelerated and the retrieval
accuracy is improved. In Section 2 we describe the formu-
lation of the gradient descent method for partially coherent
imaging. The optimized condition is introduced by simulation
in Section 3. The AIT wavefront measurement, the ultimate
goal of this paper, is shown in Section 4, where the retrieval
result of field-dependent aberrations is shown as well. In
Section 5, a qualitative assessment of the retrieval accuracy
and future perspective are presented.

2. FORMULATION
A. Optical Model
A simplified optical model of the AIT is illustrated in Fig. 1.
The z axis is defined as the optical axis. The object and image
planes are conjugate, and points on these planes are identified
with the coordinate notation �x; y�. The light source and pupil
planes are also conjugates, and points on these planes are
identified with the coordinate notation �f ; g� and are normal-
ized for the pupil radius to be unity. The coordinates �x; y� and
�f ; g� are linked by the Fourier transform relationship. The
source S�f ; g� is defined at the aperture stop of a Koehler
illumination system, which illuminates the object whose trans-
mittance (reflectance for the AIT) is a�x; y�. The spectrum
â�f ; g� is defined in the pupil plane of the imaging optics as
the Fourier transform of a�x; y�. After the spectrum is trun-
cated by the pupil function P�f ; g�, it propagates to the image
plane to form the image I�x; y; z�. The best focus plane is
defined at z � 0 with the fourth Zernike coefficient (defocus)
being zero, using the fringe Zernike polynomial notation [16].

B. Problem Setting
Assume that the image is captured at multiple focal positions
(i.e., through focus). Let the number of the captured images be
J�≥ 1�; then, the captured image is written as Ic�x; y; zj�,

where 1 ≤ j ≤ J. When we calculate the image, we have to
consider the wavefront α�f ; g�, defined in the pupil plane.
Therefore, the calculated image is a function of α�f ; g�, which
can be written as I�x; y; zj; α�. Here, as we compare the calcu-
lated images to the measured data, we define a cost function
based on the point-by-point difference as

F�α� �
XJ
j�1

ZZ
jIc�x; y; zj� − I�x; y; zj; α�j2dxdy: (1)

In the absence of noise, if α�f ; g� is equal to the wavefront in
the imaging optics and the illumination conditions are well
known, F�α� is minimized. Therefore, our final goal is to find
α�f ; g� that achieves F�α� � 0 or F�α� ≈ 0. To solve this prob-
lem we use the gradient descent method due to its compati-
bility with the partially coherent image calculation.

C. Partially Coherent Imaging Formulation for the
Gradient Descent Method
We will select an efficient calculation method of partially
coherent image formation for the gradient descent
method. Let the defocus-induced aberration be β�f ; g�. For
a quasi-monochromatic source of wavelength λ, we can sim-
plify the Hopkins transmission cross-coefficient equation
[17,18] as

I�x; y; z;α� �
ZZ

S�f 0; g0�jFT�P�f � f 0; g� g0�â�f ; g��j2df 0dg0;
(2)

P�f ; g� � c�f ; g� exp�−iα�f ; g�� exp�−izβ�f ; g��; (3)

β�f ; g� � 2π
λ

�
1 −

�������������������������������������
1 − NA2�f 2 � g2�

q �
: (4)

Here FT is the two-dimensional Fourier transform operator,
c�f ; g� represents modulation in the pupil plane, NA is the
numerical aperture, and we referred to [19] for β�f ; g�. In
this paper, we assume no modulation, so that c�f ; g� reduces
to the circ function circ�

����������������
f 2 � g2

p
�. Often, the Fourier trans-

form is computed by the FFT. We made a key change to
Eq. (2): shifting the object spectrum instead of the pupil
function; the reason for this is discussed later in this sec-
tion. Then, Eq. (2) can be changed to

I�x; y; z;α� �
ZZ

S�f 0; g0�jFT�â�f − f 0; g − g0�P�f ; g��j2df 0dg0

�
ZZ ZZ

Q�f 1; g1; f 2; g2�P�f 1; g1�

× P��f 2; g2�e−i2π��f 1−f 2�x��g1−g2�y�df 1dg1df 2dg2;

(5)

where

Q�f 1;g1; f 2; g2� �
ZZ

S�f ;g�â�f − f 1; g− g1�â��f − f 2;g− g2�dfdg:

(6)
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Fig. 1. Imaging system configuration. Due to the Fourier transform
relationship in each plane, source and pupil planes as well as object
and image planes are under a conjugate relationship.
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Note that Q�f 1; g1; f 2; g2� represents the correlation between
the two points of the pupil function as the transmission
cross coefficient represents the correlation between two
points of the diffracted light. A set of eigenvalues and eigen-
functions for efficient computation is obtained by decom-
posing the correlation Q�f 1; g1; f 2; g2� [14,15].

The decomposed result is shown assuming computation.
For the computation, we may regard the source as a collection
of N mutually incoherent point sources. Then, Eq. (5) is

I�x; y; z; α� �
XN
n�1

S�f n; gn�jFT�â�f − f n; g − gn�P�f ; g��j2; (7)

where �f n; gn� is the nth point source position. From Eq. (7),
we can obtain discretized Q�f 1; g1; f 2; g2�, which is decom-
posed into eigenvalues μ0j and eigenfunctions ψ 0

j�f ; g�
[14,15]; then

I�x;y;z;α��
XN 0

n�1

jFTfμ0nψ 0
n�f ;g�exp�−iα�f ;g��exp�−izβ�f ;g��gj2:

(8)

Here N 0 ≤ N [15]. Equation (8) is the final form of partially
coherent imaging for the gradient descent method.

We will use Eq. (8) for the following reasons. First, the im-
age calculation time depends on the repetition of the FFT, and
Eq. (8) has a possibility to finish the image calculation with
less than N FFTs. Second, although the eigenvalues μ0j and
eigenfunctions ψ 0

j�f ; g� depend on the object and the source,
they do not depend on the wavefront α�f ; g�. During the gra-
dient descent optimization, the object and source are fixed.
Once the eigenvalues and eigenfunctions are derived, they
are reusable even as the wavefront α�f ; g� changes. Therefore,
Eq. (8) will be an efficient, fast calculation method for the gra-
dient descent optimization. The benefit of the eigenvalue
methods is well examined in [14], where the wavefront is
changed in simulated annealing loops.

Decomposing Eq. (2) into eigenvalues μj and eigenfunc-
tions ψ j�f ; g�, the image function is written as [20,21]

I�x; y; z; α� �
XN
n�1

jFT�μn�z; α�ψn�f ; g; z; α�â�f ; g��j2: (9)

Computationally, in Eq. (9), we have to repeat N FFTs [21].
In addition, the eigenvalues μj and eigenfunctions ψ j�f ; g�
depend on the wavefront α�f ; g�. If we changed the wavefront
α�f ; g�, we would have to recalculate the eigenvalues and
eigenfunctions, which would require additional computation
time for eigenvalue decomposition in each loop. The differ-
ence between Eqs. (8) and (9) tells us that it is more efficient
for the gradient descent algorithm to shift the object spectrum
rather than the pupil function.

D. Gradient Descent Algorithm for Partially
Coherent Imaging
The gradient descent algorithm iteratively searches for an
extremum of a cost function. If h�ξ� is the function to
minimize, the k� 1 value of ξ in the iterative procedure is
given by

ξk�1 � ξk −w
dh
dξ

: (10)

Herew �>0� is an arbitrarily chosen weight factor. As we have
to minimize F�α� in Eq. (1), we have to differentiate F�α� with
respect to α�f ; g�. In this case, the functional derivative should
be used to define the derivative at �f 0; g0�. Then, the gradient
descent formula for α�f ; g� is

αk�1�f 0; g0� � αk�f 0; g0� −w
ZZ

dF
dα

δ�f − f 0; g − g0�dfdg

� αk�f 0; g0� −w
dF
dα

����
f�f 0 ;g�g0

: (11)

Here δ�f ; g� is the Dirac delta function. According to Eq. (11),
we would have to repeat the iteration at every point inside the
pupil, which would be computationally demanding. However,
the compatibility between the gradient descent algorithm and
the imaging calculation allows us to overcome this obstacle
[2]. Let us combine Eqs. (1), (8), (11), and the Fourier trans-
form to obtain

αk�1�f ; g� � αk�f ; g�−4w Im
XJ
j�1

XN 0

n�1

μ0nψ 0
n�f ; g� exp�−iαk�f ; g��

× exp�−izjβ�f ; g��FTf�I�x; y; zj; αk�
− Ic�x; y; zj��A�

n�x; y; zj; αk�g; (12)

An�x; y; z; α� � FTfμ0nψ 0
n�f ; g� exp�−iαk�f ; g�� exp�−izjβ�f ; g��g:

(13)

where * represents the complex conjugate, Im takes the
imaginary part of the argument, and FT−1 is the inverse
Fourier transform. This step replaces the point-by-point
iteration, and the whole wavefront gets updated on each iter-
ation. Therefore, the final output is not a limited number of
Zernike coefficients, but the complete two-dimensional wave-
front map.

3. SIMULATION
A. Parameter Setup
To match the experimental conditions of the AIT microscope,
we run a simulation in which the wavelength is 13.4 nm and
the NA is 0.0625. The source coherence factor, σ, defined
as the ratio of the illumination NA and the object side NA,
is 0.2. A random wavefront error is created as follows. First,
we randomly generate Zernike coefficients from the fifth up to
the 36th term (coefficients 1–4, for piston, x tilt, y tilt, and de-
focus are set to zero). Then, the nth Zernike coefficient Cn is
divided by

����
n

p
to imitate common behavior of real-world aber-

rations. Finally, the whole wavefront error was normalized to
150 mλ root-mean-square (RMS), which is estimated from the
zone plate design. These parameters are fixed during the fol-
lowing simulation.

To extract the phase information, and reduce the uncertain-
ties introduced by noise in the experimental data, multiple
images must be included in the fit. Here, we use four images,
which are assumed to be captured at z � −1.5z0, −0.5z0, 0.5z0,
and 1.5z0, where z0 represents a single focus step.
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For the object, we use a d × d square “contact,” a bright fea-
ture on a dark background, which is a commonly used pattern
in lithography masks for semiconductor manufacturing.

B. Contact Size and Defocus Matrix
The retrieval accuracy depends on optical parameters. The
optical parameters for partially coherent imaging include
the wavelength, NA, source, object, aberration, and defocus.
Although in the AIT it is possible to tune the wavelength and
the NA, these are not common features for other microscopes.
Thus, here we change the object and defocus step to investi-
gate an experimental framework for better retrieval accuracy.

We vary the side length d of the square contact from
0.25λ∕NA to 1.00λ∕NA. In each d, the defocus step z0 is varied

from 0.1 to 3.0 R, where R � λ∕�4�1 −
�����������������
1 − NA2

p
�� is the

Rayleigh unit of defocus. At each combination of d and z0,
we simulated an image Ic�x; y; zj� affected by the given wave-
front error. Let us define the convergence τ as in Eq. (14):

τ �
X4
j�1

������������������������������������������������������������������������������ZZ
jIc�x; y; zj� − I�x; y; zj; αk�j2dxdy

s
∕

X4
j�1

���������������������������������������������ZZ
jIc�x; y; zj�j2dxdy

s
: (14)

We set α1�f ; g� � 0 and repeated 100 iterations to obtain the
retrieved wavefront α100�f ; g�. The number of the iteration was
determined because several tests showed that the decrease of
τ at the 100th iteration was less than 1.0 × 10−4 in most cases.
Figure 2 shows the convergence τ after 100 iterations.

To obtain Fig. 2, the image calculation was done by Eq. (7)
with the given wavefront error, and then the wavefront was
retrieved by Eq. (12), which originates from Eq. (8). There-
fore, different simulation engines were used for imaging
simulation and the wavefront retrieval, though Eqs. (7) and
(8) are mathematically equal and thus produce an identical
image within the range of numerical error.

Note that the best convergence is achieved around d �
0.25λ∕NA (the smallest size studied) and z0 � 1.5R. When both
d and z0 are small, our gradient descent algorithm diverges.
The reason is that even if the sign of the 180 deg rotation sym-
metric wavefront changes, the resultant images at best focus
are unchanged. For example, assume that the wavefront is
expressed only by the fifth Zernike polynomial (astigmatism).
If the fifth Zernike coefficient C5 is either 1 or −1, the resultant
images at best focus are identical. Therefore, we cannot
determine the sign of the phase from the best focus image.
Furthermore, 180 deg rotation symmetric aberration distorts
the image less than 180 deg rotation asymmetric aberration

does. Thus, the image near best focus contains less phase in-
formation than the large out-of-focus image. Although we can
avoid the divergence by carefully adjusting the weight factor
w, it is not a trivial task. It is much simpler to avoid unstable
contact size and defocus combinations.

If we take a focus step of 0.75 R, a smaller contact shows
worse convergence than a larger contact. We do not have a
clear reason for this because this is a combined result of illu-
mination and object. There are two possible main reasons.
First, the focus step is still too small to distort the image
enough. Second, if the illumination is combined appropriately,
the image from a bigger contact is more distorted from the
image without aberration. The counterintuitive result that
occurs at a defocus of 0.75 R is perhaps due to the mixed
results of these two reasons.

The important result is that, if combined with a proper de-
focus step, smaller contacts can achieve better convergence.
The reason is that the diffracted light from the smaller contact
can fill the pupil more uniformly, improving the algorithm’s
ability to sample the nature of the wavefront. The trade-off
of using a smaller contact is less light flux, which may increase
the shot noise.

C. Simulation Time
For the image calculation, we require N 0 FFTs with Eq. (8).
The number N 0 is dominated by the spatial coherence of
the light that forms the image. Therefore, N 0 depends mostly
on the object if the illumination is fixed. For example, when
the object is an infinitely small contact, we find that N 0 � 1
regardless of the source intensity distribution [15]. Thus,
we expect that a smaller N 0 corresponds to a smaller contact.
Let us confirm it.

We set a source intensity distribution that contains 749 mu-
tually incoherent point sources, as shown in Fig. 3. According
to Eqs. (7) or (9), we have to repeat 749 FFTs to obtain the
final image regardless of the object. However, the number
of FFTs performed for one image calculation is reduced when
we use Eq. (8). Note that no eigenfuction truncation is re-
quired. Therefore, image simulation is accelerated without
approximation. By setting a d × d square contact as the object,
we simulated the relationship between the contact size d and
N 0, and the result is shown in Fig. 4. Note that as the contact
becomes smaller, N 0 also becomes smaller. Thus, we can
reduce the simulation time with a smaller contact. For

Fig. 2. Contact size and defocus matrix to find an experimental
framework. The color scale represents the convergence value τ
defined in Eq. (14).

-1 0 1
-1

0 

1 

f

g

Fig. 3. Partially coherent illumination used for the simulation in
Subsection 3.C. The white circle shows �f 2 � g2�1∕2 � 1. Each pixel
shows a point source with unit intensity that is mutually incoherent
with all others.
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example, when d is 0.7λ∕NA, N 0 is 47 to get a 94% reduction of
FFT repetition compared with Eqs. (7) or (9). This result is
also preferable because a smaller contact can achieve a higher
retrieval accuracy as discussed in Subsection 3.B.

4. EXPERIMENT
A. Experimental Setup
The AIT was operated with a wavelength of 13.4 nm and an NA
of 0.0625 (the same setup as in Section 3). For the object, we
placed approximately 1000 square contacts with 150 nm
(0.70λ∕NA) side length. These contacts are placed across
the AIT field on a 900-nm-pitch grid. The contact array is illu-
minated by partially coherent light with a coherence factor
of 0.2. The AIT has a magnification of approximately 900,
and the images are captured by a CCD with 13.5 μm pixel size.
We captured seven through-focus images with a focus step of
1 μm. One of the images is shown in Fig. 5. In spite of the small
contact size, images with enough contrast were obtained.

B. Data Processing
The strength of coherent interaction between two points
in partially coherent imaging can be approximated by
FT�S�f ; g��FT�P�f ; g�� normalized by its maximum value [22],
which we refer to as Ω�x; y� in this paper. Here, Ω�x; y� can
be used to determine whether the optical proximity effect

from an adjacent contact is significant. As Ω�900 nm; 0� ≈
Ω�0; 900 nm� ≈ 0 assuming small aberration, each contact
can be regarded as an isolated object in terms of imaging char-
acteristics. Therefore, we can crop a portion of the image that
corresponds to one of the contacts, considering it as the image
of an isolated contact.

For accurate retrieval, we have to reduce the noise. The
maximum spatial frequency of the image corresponds to twice
the pupil radius. Thus, we can reduce photon shot noise by
applying a low-pass filter that cuts all special frequencies
above that threshold.

As defocus adds only phase difference but no absorption as
in Eq. (3), every through-focus image should have the same
integrated intensity. We normalized every cropped through-
focus image to the same value before applying the gradient
descent method.

For wavefront retrieval, we have to know the value of the
defocus for each image. Although the focus step of 1 μm is
known, we do not know a prioriwhere the best focus occurs.
It is sufficient to roughly estimate the best focus location be-
cause small amounts of focus offset will be calculated by the
wavefront retrieval algorithm. Although there are various
methods for best focus estimation [23], we used the normal-
ized standard deviation defined as

H�z� �
������������������������������������������������������������RR

D �Ic�x; y; z� − Īc�z��2dxdy
Īc�z�

s
; (15)

Īc�z� �
RR

D Ic�x; y; z�dxdyRR
D dxdy

; (16)

where D is the cropped region. According to [23], H�z� has its
maximum value at the best focus position. We fit H�z� to a
quadratic form in terms of z by least square fitting and assume
the best focus position, where H�z� is maximized.

From Fig. 2, images captured with less than 0.50 R defocus
sometimes make the optimization diverge in our algorithm.
Therefore, it is preferable to use images with more than
0.50 R defocus. The focus step of 1 μm corresponds to
0.58 R. Thus, if we eliminate three images that are captured
closest to the best focus, the remaining four images have de-
focusmore than 0.50 R. For this reason, we decided to use four
images for the wavefront retrieval. An example series of four
images is shown in Fig. 6. The images are cropped around
�x; y� � �3.1 μm;−5.5 μm�, where the intensity of the images
is relatively strong, leading high-contrast images to maximize
the visualization.

As part of the processing, the CCD camera’s background
offset is subtracted, and a small, focus-dependent lateral im-
age shift that arises from stage motion and the 6 deg angle of
incidence is removed from each frame, based on the intensity
centroid. As the cropped image size was 59 × 59 pixels, zero
padding is applied to adjust the image size to 64 × 64 pixels for
FFT compatibility.

C. Wavefront Retrieval Result
For testing, we applied the gradient descent algorithm to the
images shown in Fig. 6. The convergence τ defined in Eq. (14)
was almost stable at the 250th iteration, where τ was 0.11 and
the decrease of τ was less than 1.0 × 10−3. The images are si-
mulatedwith the retrieved wavefront, which is shown in Fig. 7.

λ
Fig. 4. Relationship between the contact size and the number of
eigenfunctions.

μ

μ

Fig. 5. AIT image of contact array. The maximum intensity is normal-
ized to unity.

B38 J. Opt. Soc. Am. A / Vol. 31, No. 12 / December 2014 Yamazoe et al.



We see from Figs. 6 and 7 that image distortions are repro-
duced. Therefore, we may find that the principal aberration
is retrieved at τ � 0.11, which gave us a decision to iterate
250 times for wavefront retrieval.

The weight factor w is changed in each iteration. At the kth
iteration, we set three weight factors,w1 < w2 < w3, to obtain
three different αk�1�f ; g�. We simulated three sets of through-
focus aerial images from these three different αk�1�f ; g�

x [nm]

y 
[n

m
]

-200 0 200
-300

-200

-100

0

100

200

300

0

0.2

0.4

0.6

0.8

1

x [nm]

y 
[n

m
]

-200 0 200
-300

-200

-100

0

100

200

300

0

0.2

0.4

0.6

0.8

1

x [nm]

y 
[n

m
]

-200 0 200
-300

-200

-100

0

100

200

300

0

0.2

0.4

0.6

0.8

1

x [nm]

y 
[n

m
]

-200 0 200
-300

-200

-100

0

100

200

300

0

0.2

0.4

0.6

0.8

1

)b()a(

)d()c(

Fig. 6. Four selected through-focus image details, captured at defocus values of (a) −0.7685 R, (b) 0.9806 R, (c) 1.5636 R, and (d) 2.1467 R.
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Fig. 7. Simulated images with the retrieved wavefront at the same defocus positions as in Figs. 6(a)–6(d).
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followed by the calculation of three different τ1, τ2, and τ3.
Quadratic fitting of τ1, τ2, and τ3 with respect to w1, w2,
and w3 gives a parabolic curve whose vertex position
indicates the weight factor at the kth iteration. Including
this weight factor determination step, the simulation time
for 250 iterations was approximately 2.8 s, in which the
eigenfunction generation occupied 0.1 s. Here, we used
MATLAB R2013b in Windows 7 with a 2.80 GHz Xeon proc-
esser. This weight factor determination step was also used
in Subsection 3.B.

After this test, we extracted 926 separate areas in Fig. 5,
where the maximum intensity in each area exceeds 15%
of the peak intensity. We repeated the gradient descent
algorithm independently in each region to retrieve the field-
dependent wavefront variation. The wavefront retrieval con-
verged at 905 out of 926 areas. For practical assessment of the
wavefront, the wavefront was fit to Zernike polynomials up to
the 16th term. The number of the fitting terms is determined
by the cropped image size, which corresponds to the sampling
period in the spatial frequency domain. The RMS distribution
obtained from the fifth to 16th Zernike coefficients of the re-
covered field-dependent wavefront is shown in Fig. 8(a),
which is our final goal. Assuming the field-dependent aberra-
tions vary smoothly, we apply a polynomial fit to the available
locations, using polynomials defined as

p�x; y� �
X12
l�0

Xl

m�0

cl;mxlym; (17)

and the smoothed result is shown in Fig. 8(b).

5. DISCUSSION
A. Assessment of Wavefront Retrieval
In this subsection, we compare the recovered wavefront with
the expected wavefront from the lens (Fresnel zone plate)
design [24]. As we have not established a method to quantita-
tively assess the retrieval accuracy, qualitative assessment
will be performed.

First, the best focus distribution was examined. Tempo-
rarily, we assumed that the fourth focal plane was the best
focus plane. Rough focus offset was estimated as the position
at which the normalized standard deviation H�z� took its
maximum value. Then, additional defocus offset was esti-
mated by fitting β�f ; g� in Eq. (4) from the retrieved wavefront.
Summing up the rough and additional focus offset, the best
focus distribution is obtained as shown in Fig. 9(a). As the
lens design predicts [24], the best focus position varies
along the y axis, whereas the best focus position is stable
along the x axis. Figure 9(a) shows this characteristic.

Next, the distribution of the astigmatism is examined.
Let C5 and C6 be the fifth and sixth Zernike coefficients, re-
spectively. The RMS of 0–90 deg astigmatism is determined

by jC5j∕
���
6

p
, and 	45 deg astigmatism is determined by

jC6j∕
���
6

p
. The RMS distribution of astigmatism is shown in

Figs. 9(b) and 9(c). According to [24], the fifth Zernike coef-
ficient C5 varies along the y direction, and the sixth Zernike
coefficient C6 varies along the x direction. Figures 9(b) and
9(c) clearly show this tendency. Furthermore, total astigma-

tism
������������������
C2

5 � C2
6

q
∕

���
6

p
around x � −3 μm and y � 4 μm is

almost zero. The astigmatism in the AIT images can be
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Fig. 8. RMS distribution of the recovered field-dependent wavefront. (a) RMS of wavefront at each discrete contact hole location. (b) Polynomial
fit of (a).
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Fig. 9. Field-dependent wavefront fit by Eq. (17) for visualization. (a) Best focus distribution. (b) RMS distribution of 0–90 deg astigmatism.
(c) RMS distribution of 	45 deg astigmatism.
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reduced by alignment [7]. As the data used in this paper were
taken after the alignment was done, the retrieved wavefront
should have a nearly zero astigmatism region. Figures 9(b)
and 9(c) show this feature as well.

Clearly, the best performance of the AIT is achieved where
astigmatism is minimized. To explore the potential perfor-
mance of the AIT, two points are selected in a region in which
the astigmatism is minimized. These two points are (−2.5 μm,
4.8 μm) and (−0.2 μm, 5.1 μm). The Zernike coefficients up to
the 16th term at these two points are evaluated as in Fig. 10.
The RMS values up to the 16th term are 34mλ RMS at
(−2.5 μm, 4.8 μm) and 38mλ RMS at (−0.2 μm, 5.1 μm), and
it is assumed that the AIT can approximately realize the
diffraction-limited imaging system.

The wavefront in a small enough area should have some
similarities because the wavefront slowly varies across the
field. Therefore, to confirm the similarities of the wavefront
in a small area can be an additional qualitative assessment
of this wavefront retrieval method. Two-dimensional wave-
front maps at adjacent 3 × 3 points (total of 18 adjacent
points) are shown in Fig. 11. The two points selected for
Fig. 10, highlighted by read squares, are the centers of the
3 × 3 points. The 18 wavefront maps possess similar profiles,
such as negative dot-like peaks. This result gives us an
additional qualitative verification of the wavefront retrieval
method.

Figure 11 has another aspect. If we assume in this region
that the contact is perfectly fabricated, the illumination is
uniform, the best focus position is unchanged, and the wave-
front is the same, Fig. 11 gives a repeatability estimation of

wavefront retrieval, although a limited one because of the
required assumptions.

To calculate the results of Figs. 8–10, an image with size of
64 × 64 pixels is used by zero padding the original 59 × 59 pixel
image. However, for Fig. 11, we used 512 × 512 pixel images
obtained by extra zero padding to the 59 × 59 pixel image to
increase the number of pixels in the wavefront, which im-
proves the visual evaluation of the wavefront.

B. Further Modeling Ideas
For the sake of modeling simplicity, we neglected several
factors in imaging calculation. In this subsection, we discuss
possible factors that can be modeled into the gradient descent
algorithm.

The first factor is the object transmission function
a�x; y�. In this paper, we used the Kirchhoff boundary
condition [25], in which the contact transmittance was rep-
resented by a two-dimensional rect function. If we know
the object transmission function a�x; y� more accurately,
the wavefront retrieval accuracy will be improved. One pos-
sible way is the use of simulation that can predict the
electromagnetic field from the contact consisting of an
absorber and multilayer film stack to reflect EUV light
[26]. The simulation methods are reviewed and studied in
[26]. Since the image can be predicted with the simulated
object transmittance, we may safely assume that the object
transmittance a�x; y� can be obtained by simulation. Once
the object transmittance a�x; y� is simulated, we reuse it
on every contact assuming that every contact has the same
shape.
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Fig. 10. (a) Zernike coefficients at (−2.5 μm, 4.8 μm). The RMS value up to the ninth term is 26mλ RMS, and up to the 16th term is 34mλ RMS.
(b) Zernike coefficients at (−0.2 μm, 5.1 μm). The RMS value up to the ninth term is 17mλ RMS, and up to the 16th term is 38mλ RMS.

Fig. 11. Two-dimensional wavefront maps retrieved at 18 adjacent points. The coordinates above each wavefront are in units of micrometers. The
wavefront highlighted by a red square is obtained at one of the two selected points of Fig. 10.
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The EUV light source of AIT has an energy bandwidth
ΔE∕E of 1/1450 [7]. Finite bandwidth blurs the image, which
can be modeled as an incoherent summation of images from
different wavelengths [27]. This process does not change the
fundamental of the gradient descent algorithm formulation,
although simulation time is increased. As we concentrated
on the acceleration of wavefront retrieval, we assumed a
quasi-monochromatic source.

We neglected the magnification effect as well. If the mag-
nification is high, the object side NA and image side NA differ,
which should be radiometrically corrected. The radiometric
correction can be modeled by adding an obliquity factor
to c�f ; g� in Eq. (3) [28]. Although the magnification of AIT
is not small (approximately 900), the NA of AIT is low
(0.0625). The obliquity factor with this NA did not affect
the imaging result significantly. To simplify the imaging model
in this paper, we omitted the obliquity factor.

Another factor that can be modeled but is neglected in this
paper is the high-NA effect. We used the scalar approximation
that is applicable to low-NA imaging as in this paper. The
scalar formulation is applicable even to the newly developed
higher-NA EUV microscope with NA of 0.15625 [29]. Never-
theless, for higher simulation accuracy, we may model the
high-NA related polarization effect by changing c�f ; g� in
Eq. (3) [28]. There is an EUVmicroscope specific issue related
to high-NA imaging. As the indent angle to the object is 6 deg,
the diffracted light is distorted. We need to obtain the object
transmittance more accurately considering the oblique
incidence, which can be realized by current simulation
tools. The last concern is the contact manufacturability. In this
paper, a contact with side length of 0.7λ∕NA is used, with
which acceptable retrieval speed and accuracy are realized.
If we scale down the contact size with NA � 0.15625,
0.7λ∕0.15625 � 60 nm, which approaches the current fabrica-
tion limit. We may use a larger contact, though it increases the
retrieval time associated with an increased number of eigen-
functions for image calculation. Modeling shot noise would be
one way to set specifications on the required number of pho-
tons to make the accuracy reach a given level.

6. SUMMARY
The wavefront of the AIT was retrieved by the gradient
descent algorithm from a series of through-focus images illu-
minated by a partially coherent source. To retrieve the field-
dependent wavefront, contacts should be placed such that the
interaction between the contacts becomes negligible; then we
can apply the gradient descent algorithm to each contact
image. The retrieved wavefront distribution qualitatively
agrees with the expected characteristic from its lens design.
We showed that smaller contacts achieved greater accuracy.
We attribute this to the larger coverage of diffracted light in
the pupil, and the benefits to the partially coherent imaging
calculation within this method. We also showed that the
smaller contact accelerated image calculation if the image
was decomposed into eigenfunctions and eigenvalues deter-
mined from the source and object. Technically, the gradient
descent algorithm can be applied to retrieve both phase
and amplitude. Formulation of the object’s phase and ampli-
tude retrieval is a challenging application for extending
the capabilities of short-wavelength imaging microscopes
where interferometric lens characterization is unavailable. In

addition, we incorporated the object transmittance and illumi-
nation source intensity. Initial testing shows that our algo-
rithm can retrieve the wavefront with the object of double
contacts that are sensitive to coma aberration (result not
shown here). Finding better combinations of objects and
sources for phase retrieval will be another way to improve
the accuracy of wavefront recovery.
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