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ABSTRACT  

We describe design guidelines for soft x-ray wavefront sensors and experimentally demonstrate their performance, 
comparing grating-based lateral shearing interferometry and Hartmann wavefront sensing. We created a compact 
shearing interferometer concept with a dense array of binary amplitude gratings in a single membrane to support one-
dimensional wavefront measurements across a wide wavelength range without the need for longitudinal position 
adjustment. We find that a common scaling parameter based on wavelength and the distance to the measurement plane 
guides the design of both systems toward optimal sensitivity. We show preliminary results from recent experiments 
demonstrating one and two-dimensional wavefront sensing below the Maréchal criterion. 

Keywords: X-ray optics, synchrotron radiation, wavefront sensing, soft x-ray, Hartmann sensors, lateral shearing 
interferometry, scintillator, diffraction-limited storage rings 

1. INTRODUCTION  
With the emergence of x-ray diffraction-limited storage rings and free-electron lasers1 comes an increasing interest in at-
wavelength wavefront sensors2-5 to serve as diagnostics and for feedback to adjustable degrees of freedom, including 
adaptive optical elements. Any perturbations of the coherent photon beam generated by the ultra-low emittance electron 
beam can spoil the quality of the beam. Static wavefront errors arise from the additive contributions of surface and 
coating quality, relative alignment, and cleanliness of the optical elements within a beamline. Dynamic errors arise from 
vibration, drift, instability, the mis-calibration of active elements, and from uneven deformation under heat load –which 
becomes an increasing concern as beam sizes get smaller and brighter6. 
 
Numerous methods of wavefront sensing at short wavelengths have been demonstrated in recent years. Where high 
coherence is available, common path interferometers–such as the point diffraction interferometer (PDI7,8,9) and the 
phase-shifting point diffraction interferometer (PS/PDI10,11)–allow comparison with a spherical reference beam through 
pinhole diffraction, but they can be challenging to align and are typically applicable to small wavefront errors. Grating-
based shearing interferometers rely on the self-interference of the beam; they are easy to align and operate with wider 
dynamic range. Such techniques include lateral shearing interferometry with amplitude12 or phase gratings4, Ronchi 
gratings5 or Talbot imaging3,13. Non-interferometric techniques are also available where beam coherence is low or large 
wavefront errors must be measured. The Hartmann technique uses a static grid to measure local wavefront slope values 
based on the diffraction of non-interfering beamlets2,14. So-called pencil beam techniques measure wavefront slope errors 
using a scanning slit or pinhole. Other highly-sensitive methods that have recently been demonstrated include speckle 
tracking15,16 and ptychography17. 
 
Among these techniques, we believe that shearing interferometry and Hartmann wavefront sensing, with their compatible 
measurement configurations and complementary properties, have the greatest applicability for soft x-ray applications. 
Once calibrated, these techniques can operate with high efficiency, high sensitivity, and they allow data collection from a 
single, static measurement.  
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The binary amplitude gratings were fabricated in 100-nm-thick gold patterns on 2-mm square 100-nm-tick silicon-nitride 
windows. They were manufactured using contact photolithography and electroplating. The gratings were assembled in 
groups of four on silicon wafer chips, plus an empty window, as shown in Fig. 5. 
 

 
Figure 5.  Grating chips. (left) Grating chip layout, with 18.8, 22.3 μm, 31.5 μm and 44.5 μm pitch shearing gratings, to 
cover the 250–1400 eV range, and one empty window. (right) Grating chip mounted on a linear stage inside a vacuum 
vessel, to allow easy switching between grating pitches. 

 
Before final assembly, we calibrated the reimaging optics magnification by recording images of a 200 line/mm Ronchi 
ruling. We found the magnification to be within 0.1% of the design. The observed distortion at the edge of an image was 
measured to be 612 ± 57 nm peak-to-valley (PV). Therefore, for a 30-μm-pitch shearing pattern, uncalibrated distortion 
would appear as a λ/50 PV systematic error. This magnitude is consistent with the accuracy reported by Liu on a 
comparable system before calibration4. 
 
The effective magnification of the system is 5.00x. The addition of glass in the optical path does change the effective 
focal length, but the magnification remains the same. We predicted the vacuum/atmospheric differential pressure on the 
optical flat to induce a 1.6 µm deflection at the center of the 2-inch diameter, 3-mm-thick optical flat. Combined with the 
spherical aberration caused by the presence of glass, the imaging performance remains diffraction limited, with 200 
lines/mm grating clearly resolved (0.61λYAG/NA=2.8μm). 
 
The optical elements were pre-aligned on an optical bench using a 5 mW He-Ne laser, before installation on ALS 
bending-magnet beamline 6.3.2 (Fig. 6c.) Residual misalignment of the stage axes caused the gratings windows to 
reduce useful field of view to 1.8 mm x 1.5 mm in our first round of experiments. 

4. RESULTS 
First experiments were performed on beamline 6.3.2 of Lawrence Berkeley National Laboratory’s Advanced Light 
Source. While this bend magnet beamline24 has a photon energy range of 50–1300 eV, we performed the majority of our 
experiments at 500 eV, with flux of about 8x1010 ph/sec and a 1:1500 spectral bandwidth. The beam size at focus was 
50um x 100um, with divergence 1mrad x 0.5mrad. The shearing grating was located 2.5 m from focus, so that the beam 
would be overfilling the sensor. At this flux level, we set the acquisition time of the camera to 10 seconds, recording 
multiple repeats for data accumulation where necessary.  
 
We recorded data using a variety of horizontal and vertical 1D shearing gratings. Horizontal fringes are shown in Fig. 7a. 
The 10 µm vertical source size in today’s ALS imparts significantly higher coherence in the vertical direction than in the 
horizontal, where the beam size is 250 μm. This contributes to higher fringe contrast in the vertical direction (horizontal 
fringes). For 1D data collection, the image data can be integrated in the direction parallel to the fringes to significantly 
improve the signal to noise ratio, relative to 2D wavefront measurements. 
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Figure 7. Shearing interferometry. (a) Horizonal 1D shearing grating with 31.5 μm pitch. The spatially varying intensity 
arises from non-uniformities in the beam. (b) Multi-wavelength shearing gratings with pitch [30.2-33.3 μm].  

 
We also collected data to demonstrate the 1D multi-grating principle (Fig 7b). Here, the gratings form an array with a 
different pitch in each grating. For wavelengths within the operating range, there will always be at least one grating 
projecting high-contrast fringes close to the Talbot condition.  
 
Both 1D and 2D Hartmann wavefront sensor data was collected using the grids on the downstream stage (Fig. 8a and 8b) 
 

     

Figure 8. Hartman grids. (a) 1D Hartmann grid with 18 μm width and 120 μm spacing. (b) 2D Hartmann grid, with the 
same parameters. 

To assess the stability of the system, we used the zero order beam with a glass filter in order to perform fast data 
acquisition (5 msec exposure time). We were able to measure that the vibration of the camera was below 1.5 μm. For 
longer exposure time, the repeatability of the centroiding procedure for a single spot along the vertical direction was 
below εspot = 0.074 px-rms, corresponding to εH = εspot·D/L =51 pm ~ λ/50-rms at 500 eV. 
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Advanced Light Source. Our soft x-ray wavefront sensor was designed to operate in vacuum, with photon beam energies 
in the 250–1400 eV energy range, although the principle is applicable to a wide range of EUV and tender x-ray energies 
as well. With independent measurement and reconstruction, the observed wavefront errors from shearing interferometry 
and Hartmann sensing were 0.623 nm and 0.624 nm, respectively, across a beam width of 1.5 mm. Even without 
calibration, direct comparison of the wavefronts showed a residual difference of 0.071 nm rms. We will proceed to 
further experiments so as to calibrate the sensor to determine its accuracy. We also want to investigate the effect of finite 
bandwidth (for non-monochromatized beams) and refine the analysis for cases where the measurements are not in the 
Talbot plane. 
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