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Abstract: Optical surfaces represented by second-degree polynomials (quadratic or conics)
are ubiquitous in optics. We revisit the equations of the conic shapes in the context of
grazing incidence optics, gathering together the curves commonly used in x-ray instruments and
synchrotron beamlines. We present the equations for paraboloids, ellipsoids, and hyperboloids in
a common and consistent notation. We develop the transformations from centered systems that
are commonly used to describe conics and their axes of symmetry, to local coordinate systems
centered on the off-axis mirror surfaces. The equations presented are directly applicable to ray
tracing, fabrication, and metrology calculations. They can also be used to study misalignments,
movement tolerances, and aberrations of optical surfaces.

1. Introduction

Conic surfaces have various properties and applications in geometry, physics, engineering, and
computer graphics. They play a crucial role in the field of optics, where they are used to
describe the shapes of optical surfaces such as lenses and mirrors, for applications in telescopes,
microscopes, cameras, and laser systems. These surfaces are formed by rotation of a conic
section (parabola, ellipse, hyperbola, circle) around an axis of symmetry.

As mirrors, these ideal shapes are used in the following ways. Ellipsoidal surfaces focus
point-to-point [1]. Paraboloidal surfaces focus collimated light, or collimate diverging light [2].
Hyperboloidal surfaces change the apparent focal distances of diverging or converging light [3].

This paper aims to provide an overview of the mathematical equations of the conic surfaces in
optics in general non-centered systems, where the light beam is not traveling along a surface
symmetry axis. This is the case of grazing incidence optics, essential for x-ray instruments
and synchrotron radiation beamlines [4]. The equations of these surfaces are expressed as
a function of the design conjugate distances and central angle, or design parameters: this is
typically the distance source-component 𝑝, the distance component-image plane 𝑞, and the
grazing incidence angle at the optical surface 𝜃. For high-performance and wavefront-preserving
x-ray, extreme-ultraviolet, and other short-wavelength applications, optical surface shapes are now
routinely measured in fractions of a nanometer, even when they extend hundreds of millimeters or
over a meter in length. This puts great demands on the precision of their mathematical description
and analysis.

Coddington’s Equations provide a first approximation of the focusing properties of optical
elements based on their local curvature [5]. With paraxial focal length 𝑓 , and glancing angle of
incidence 𝜃, we have the following pair of relations:

𝑅𝑠 = 2 𝑓 sin 𝜃 and 𝑅𝑚 =
2 𝑓

sin 𝜃
. (1)

Here, at the central point of intersection, 𝑅𝑚 and 𝑅𝑠 are the meridional (tangential) and sagittal
radii of curvature, respectively. As surface descriptions increase in complexity, these expressions
can provide a useful means of validation.

Fermat’s principle, or the principle of least time, states that the path taken by a ray of light
between two points is the path that can be traversed in the least time. This principle can be used
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to derive the laws of reflection and refraction [6]. The equations of conic mirrors may be directly
deduced from the Fresnel principle, like for parabolic [7] and elliptical [8] mirrors.

In this paper, we provide a mathematical analysis of the equations governing conic surfaces and
derive the parameters for various types of conic mirrors based on manufacturing specifications.
Our goal is to provide a comprehensive and consistent mathematical overview of these surfaces,
which is valuable for applications in metrology and computational ray tracing.

2. The conic coefficients

A generic optical surface can be expressed by its implicit equation

𝐹 (𝑥, 𝑦, 𝑧) = 0. (2)

In this paper, we concentrate on the particular case that 𝐹 is a second-degree polynomial
(quadratic). This case covers many primitive optics of high interest in optics, like planes,
spheres, ellipsoids, paraboloids, hyperboloids, and their corresponding “sagittally-plane" versions
(cylinders of parabolic, elliptical, or hyperbolic section). These surfaces belong to the generic
family of conics, which are expressed as

𝐹 (𝑥, 𝑦, 𝑧) = 𝑐𝑥𝑥𝑥
2 + 𝑐𝑦𝑦𝑦

2 + 𝑐𝑧𝑧𝑧
2

+ 𝑐𝑥𝑦𝑥𝑦 + 𝑐𝑦𝑧𝑦𝑧 + 𝑐𝑥𝑧𝑥𝑧

+ 𝑐𝑥𝑥 + 𝑐𝑦𝑦 + 𝑐𝑧𝑧 + 𝑐0 = 0.
(3)

The optical element surface, or explicit function 𝑧(𝑥, 𝑦), is obtained first by rearranging the
terms in 𝑧: 𝐹 (𝑥, 𝑦, 𝑧) = 𝐴𝑧2+𝐵𝑧+𝐶 with 𝐴 = 𝑐𝑧𝑧 ; 𝐵 = 𝑐𝑦𝑧𝑦+𝑐𝑥𝑧𝑥+𝑐𝑧;𝐶 = 𝑐𝑥𝑦𝑥𝑦+𝑐𝑥𝑥+𝑐𝑦𝑦+𝑐0,
and solving the second-degree equation for each coordinate (𝑥, 𝑦) in the basal plane of the mirror.

A central problem in ray tracing is to calculate the intersection of the optical surface [Eq. (2)]
with a ray. The ray can be defined by a point (𝑥0, 𝑦0, 𝑧0) and a director vector (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧). The
ray propagates in vacuum along a straight line of coordinates (𝑥, 𝑦, 𝑧) expressed by the parametric
equations

𝑥 = 𝑥0 + 𝑡𝑣𝑥

𝑦 = 𝑦0 + 𝑡𝑣𝑦

𝑧 = 𝑧0 + 𝑡𝑣𝑧 ,

(4)

where 𝑡 is the free parameter (𝑡 is the time if (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) is the velocity, or the optical path if it is
the unitary direction vector). Introducing Eq. (4) into (3) we obtain a second degree equation in 𝑡

whose solutions fully define the two, one, or zero intersection points.
For practical purposes, especially for non-centered optical systems using grazing incidence

optics, Eq. (3) is expressed in a mirror-centered reference system local to the mirror, with the
coordinate origin at the center of the mirror. In the reference system in this paper (as in the
SHADOW ray-tracing code [9]), the 𝑥 axis goes along the sagittal (transverse) direction, the
𝑦 axis goes along the meridional direction (tangential, pointing close to the direction of the
beam), and 𝑧 is the surface height measured orthogonal to the 𝑥𝑦-plane. In this coordinate-system
definition, the 𝑥𝑦 plane is tangent to the surface at the central point.

We will obtain the 𝑐 coefficients of Eq. (3) for the different conic optical elements or mirrors
placed in a non-centered system, like a typical synchrotron radiation beamline.

3. Transformation of the conic coefficients

The generic conic in Eq. (3) can be written in matrix form

𝐹 (X) = X𝑇𝐶𝑀X + C𝑇
𝑉X + 𝑐0 = 0, (5)



with

𝐶𝑀 =


𝑐𝑥𝑥

𝑐𝑥𝑦

2
𝑐𝑥𝑧
2

𝑐𝑥𝑦

2 𝑐𝑦𝑦
𝑐𝑦𝑧

2
𝑐𝑥𝑧
2

𝑐𝑦𝑧

2 𝑐𝑧𝑧


; C𝑉 =


𝑐𝑥

𝑐𝑦

𝑐𝑧


; X =


𝑥

𝑦

𝑧


(6)

and the T is the transpose operator. We want to modify the conic surface by a sequential rotation
and translation. The transformed conic has the same shape, so the transformation can be seen
as a change of the reference system. We want to calculate the transformed coefficients 𝑐′

𝑖
as a

function of the original coefficients 𝑐𝑖 in Eq. (3), a rotation matrix 𝑅𝑀 and a translation vector t.
We follow the text in Ref. [10].

The matrix 𝑅𝑀 describes a 3D rotation. A rotation around an arbitrary axis can be decomposed
into sequential rotations, for example, rotation about the Cartesian axes, or by using the Euler
angles (in [10] the three Euler angles Ω,Θ,Φ are sequential rotations around the 𝑍 , 𝑋 and,
again, 𝑍 axes). Given a conic 𝐹 (X) = 0, we can generate a new surface by applying a rotation
𝑅𝑀 (Ω,Θ,Φ) and a translation 𝑇 (t) (in this order). The implicit equation of the transformed
surface 𝐺 (X) in its new mirror-centered coordinate system is

𝐺 (X) = 𝐹 (X′) = 𝐹 [𝑅−1
𝑀 (Ω,Θ,Φ)𝑇−1 (t)X] = 0, (7)

which states that𝐺 (X) equals the value of the original function at the point X′ = 𝑅−1
𝑀
(Ω,Θ,Φ)𝑇−1 (t)X

that transforms into X [i.e., X = 𝑇 (t)𝑅𝑀 (Ω,Θ,Φ)X′]. Therefore, the equation for the rotated-
shifted conic is, from Eq. (5),

(X − t)𝑇𝑅𝑀𝐶𝑀𝑅𝑇
𝑀 (X − t) + (𝑅𝑀C𝑉 )𝑇 (X − t) + 𝑐0 = 0. (8)

This can be reduced to the generic form

X𝑇𝐶̂𝑀X + Ĉ𝑇

𝑉X + 𝑐0 = 0, (9)

with

𝐶̂𝑀 = 𝑅𝑀𝐶𝑀𝑅𝑇
𝑀

Ĉ𝑉 = 𝑅𝑀C𝑉 − 2𝐶̂𝑀 t
𝑐0 = 𝑐0 + t𝑇 (𝐶̂𝑀 t − 𝑅𝑀C𝑉 ),

(10)

which fully defines the new coefficients 𝑐′
𝑖
.

4. Conics in a centered system with origin in a focus

As an example of the application of the equations (10), we translate the centered conics to place
the coordinate origin at one focus. This geometry arises when studying a combination of two
or more optical elements aligned on a central axis, as with a Wolter telescope [11, 12], or a
Schwarzschild objective [13, 14]. We show that computation with the matrix formalism matches
direct variable substitution in this simple case.

The equations of the two-dimensional, centered parabola, ellipse, and hyperbola, in the plane
(𝑌, 𝑍) serve as the generating curves for the axial-symmetric, three-dimensional shapes in
(𝑋,𝑌, 𝑍). In this centered system, the coordinates are capitalized. Fig. 1a displays the three
conics in this centered system. Table 1 shows (𝑋,𝑌, 𝑍), the coefficient matrix 𝐶𝑀 , the vector
C𝑉 , and the independent term 𝑐0.

To bring the center to the focal position, we define the translator vector as follows.

• For the parabola: t = [0, 0,−𝑎𝑝]𝑇 .



a)

b)

Fig. 1. a) Ellipse (orange), hyperbola (blue) and parabola (green) in the centered
system, showing in black one focus of the ellipse and hyperbola, and in red the focus of
the parabola. b) the same conics expressed in a reference system with origin in their
respective foci (see text).



parabola ellipse hyperbola

Equation 𝑌2 = 4𝑎𝑝𝑍
𝑌2

𝑎2
𝑒
+ 𝑍2

𝑏2
𝑒
= 1 𝑌2

𝑎2
ℎ

− 𝑍2

𝑏2
ℎ

= 1

𝐶𝑀


0 0 0

0 1 0

0 0 0



0 0 0

0 1
𝑎2
𝑒

0

0 0 1
𝑏2
𝑒



0 0 0

0 1
𝑎2
ℎ

0

0 0 − 1
𝑏2
ℎ


C𝑉


0

0

−4𝑎𝑝



0

0

0



0

0

0


𝑐0 0 -1 -1

Table 1. Centered conics in the 2D (𝑌, 𝑍) plane. These are the generating curves of the
axial-symmetric, three-dimensional shapes.

• For the ellipse: t = [0, 𝑐𝑒, 0]𝑇 .

• For the hyperbola: t = [0, 𝑐ℎ, 0]𝑇 .

Here, 𝑎𝑝 is the focal distance (Eq. 11a) 𝑐𝑒 and 𝑐ℎ are the distances from the origin to the focus of
the ellipse and the hyperbola, respectively.

We are interested in the simple case of a pure translation, therefore the equations of the conics
in a reference system (𝑥, 𝑦, 𝑧) centered at the focus, can be obtained directly, by substitution:

parabola : 𝑦2 = 4𝑎𝑝 (𝑧 + 𝑎𝑝), (11a)

ellipse :
(𝑦 − 𝑐𝑒)2

𝑎2
𝑒

+ 𝑧2

𝑏2
𝑒

= 1, (11b)

hyperbola :
(𝑦 − 𝑐ℎ)2

𝑎2
ℎ

− 𝑧2

𝑏2
ℎ

= 1. (11c)

Nonetheless, as an exercise, we want to obtain them by applying the Eqs. (10). We observe
that there is no rotation, therefore 𝑅𝑀 and 𝑅𝑇

𝑀
are the identity matrix. In consequence,

𝐶̂𝑀 = 𝐶𝑀 so the coefficients of second-order do not change. Moreover, Ĉ𝑉 = C𝑉 − 2𝐶𝑀 t, and
𝑐0 = 𝑐0 + t𝑇 (𝐶𝑀 t − C𝑉 ). A summary of the coefficients is in Table 2. The conic equations
obtained in this way (Table 2) are equivalent to those directly deduced [Eq. (11)].

5. General analytic descriptions of paraboloids, ellipsoids, and hyperboloids in
surface-centered coordinates

For studying mirrors in synchrotron beamlines, for computing the surface height profile 𝑧(𝑥, 𝑦),
for surface fabrication and metrology, and for ray-tracing calculations, it is useful to express
Eq. (3) in a system local to the optical element, with zero coordinate and zero slope at its center.
We refer to this as the local coordinate system; it is often called the mirror-centered system. It is
often desirable to describe the mirror height profile 𝑧(𝑥, 𝑦)—and the coefficients of Eq. (3)—as a
function of the design parameters: the conjugate distances 𝑝 and 𝑞 (distances source-mirror and
mirror-image, respectively), and the glancing angle of incidence 𝜃, measured at the central-ray’s
intersection point.



parabola ellipse hyperbola

𝐶̂𝑀


0 0 0

0 1 0

0 0 0



0 0 0

0 1
𝑎2
𝑒

0

0 0 1
𝑏2
𝑒



0 0 0

0 1
𝑎2
ℎ

0

0 0 − 1
𝑏2
ℎ


Ĉ𝑉


0

0

−4𝑎𝑝




0

− 2𝑐𝑒
𝑎2
𝑒

0




0

− 2𝑐ℎ
𝑎2
ℎ

0


𝑐0 −4𝑎2

𝑝 −1 + 𝑐2
𝑒

𝑎2
𝑒

−1 + 𝑐2
ℎ

𝑎2
ℎ

Equation 𝑦2 − 4𝑎𝑝𝑧 − 4𝑎2
𝑝 = 0; 𝑦2

𝑎2
𝑒
+ 𝑧2

𝑏2
𝑒
− 2 𝑐𝑒

𝑎2
𝑒
𝑦 − 1 + 𝑐2

𝑒

𝑎2
𝑒
= 0; 𝑦2

𝑎2
ℎ

− 𝑧2

𝑏2
ℎ

− 2 𝑐ℎ

𝑎2
ℎ

𝑦 − 1 + 𝑐2
ℎ

𝑎2
ℎ

= 0;

Table 2. Conics in the 2D (𝑦, 𝑧) plane, centered on one focus. They are obtained from
the centered conics of Table 1 transformed using Eqs. (10).

We apply rotation and translation to the conic sections to bring them from their centered
system to the local coordinate system. In this way, we obtain polynomial expressions of the
transformed surfaces, as 𝑧𝑖 (𝑥𝑖 , 𝑦𝑖), a format that simplifies the study of arbitrary misalignments
and surface errors.

Starting with the centered conic, we follow these steps to compute the conic coefficients in the
local reference:

1. Write the conic equation in the centered reference system and compute the list of the 10
coefficients 𝑐𝑖 . In a centered system, the rotational symmetry around the 𝑧-axis implies
some coefficients are zero: 𝑐𝑥𝑦 = 𝑐𝑦𝑧 = 𝑐𝑥𝑧 = 0. The coordinates in this centered system
are capitalized: (𝑋,𝑌, 𝑍). Using these coefficients, construct the 𝐶𝑀 matrix and C𝑉

vector [Eq. (6), Table 1].

2. Express the parameters that appear in the coefficients (typically the semi-axes, linear
eccentricity, etc.) as a function of the “design parameters" (conjugate distances: source-
mirror distance 𝑝, mirror-focus distance 𝑞, and glancing incidence angle 𝜃 )

3. Compute the coordinates of the center of the mirror X𝑐 = (𝑋𝑐, 𝑌𝑐, 𝑍𝑐) (this point will be
the origin in local coordinate system).

4. Compute the normal versor n at X𝑐, using the expression N = −▽𝐹; thus n = N/|N| =
(𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧).

5. Compute the roto-translation matrix and vector, to implement the sequential rotation of
Θ around the 𝑋 axis (to bring N to the new z axis) and a translation t, to bring X𝑐 to the
origin of the new system. The rotation around 𝑋 of angle Θ, has a matrix

𝑅𝑀,𝑋 (Θ) =


1 0 0

0 cosΘ − sinΘ

0 sinΘ cosΘ


, (12)

and the translation vector is t = −𝑅𝑀X𝑐. Compute Θ as a function of the known
parameters.



6. Apply the Eqs. (10) to get the new set of coefficients 𝑐′
𝑖
.

5.1. Paraboloid

The meridional section in the plane 𝑌𝑍 has equation (Fig. 2, Table 1)

𝑌2 = 4𝑎𝑝𝑍, (13)

with focus at (0, 𝑎𝑝 , 0) and vertex at (0, 0, 0). The distance from the focus to the parabola
directrix is 2𝑎𝑝 . The non-zero coefficients of the revolution paraboloid (obtained by replacing
𝑌2 −→ 𝑋2 + 𝑌2) are 𝑐𝑦𝑦 = 𝑐𝑥𝑥 = 1, 𝑐𝑧 = −4𝑎𝑝. Two configurations are possible: (i) focusing
incident rays, collimated parallel to the axis of symmetry, and (ii) collimating rays emanating
from the focus.

i) Focusing configuration (type IIIA in [7], violet path in Fig. 2), with

• The design parameters are 𝑝 = ∞, 𝑞, 𝜃.

• The center abscissa is 𝑌𝑐 = −𝑞 sin(2𝜃) = −2𝑞 sin 𝜃 cos 𝜃.

• The parameter 𝑎𝑝 can be obtained from the slope at X𝑐 which is 𝑚 = 𝑑 (𝑧(𝑌𝑐))/𝑑𝑌 =

𝑌𝑐/(2𝑎𝑝). Therefore, 𝑎𝑝 = 𝑌𝑐/(2𝑚) = 𝑌𝑐/(2 tan(𝜋/2 + 𝜃)) = −𝑌𝑐 tan(𝜃)/2 = 𝑞 sin2 𝜃.

• The center ordinate is 𝑍𝑐 = 𝑌2
𝐶
/(4𝑎𝑝) = 𝑞 cos2 𝜃.

• The (non-normalized) normal vector is aligned with N = (0,−2𝑌𝑐, 4𝑎𝑝).

• The normalized normal is n = N/|N| = (0, cos 𝜃, sin 𝜃).

• The angle from n to Z is Θ = 𝜋/2 − 𝜃 .

• The non-zero 𝑐′ coefficients are

𝑐′𝑥𝑥 = 1,

𝑐′𝑦𝑦 = sin2 𝜃 = 𝑛2
𝑧 ,

𝑐′𝑧𝑧 = cos2 𝜃 = 𝑛2
𝑦 ,

𝑐′𝑦𝑧 = 2 sin 𝜃 cos 𝜃 = 2𝑛𝑦𝑛𝑧 ,
𝑐′𝑧 = −4𝑞 sin 𝜃 = −4𝑞𝑛𝑧 .

(14)

ii) Collimating mirror (type IIIB in [7], green path in Fig. 2), with

• The design parameters are 𝑝, 𝑞 = ∞, 𝜃

• The center absciss is 𝑌𝑐 = 𝑝 sin(2𝜃) = 2𝑝 sin 𝜃 cos 𝜃.

• The parameter 𝑎𝑝 is 𝑎𝑝 = 𝑝 sin2 𝜃.

• The center ordinate is 𝑍𝑐 = 𝑌2
𝐶
/(4𝑎𝑝) = 𝑝 cos2 𝜃.

• The (non-normalized) normal is aligned with N = (0,−2𝑌𝑐, 4𝑎𝑝).

• The unit normal vector is n = N/|N| = (0,− cos 𝜃, sin 𝜃)

• The angle from n to Z is Θ = −(𝜋/2 − 𝜃) .



Fig. 2. The parabola in a centered reference system (𝑋,𝑌, 𝑍). The local reference
system is (𝑥, 𝑦, 𝑧)

• The non-zero 𝑐′ coefficients are

𝑐′𝑥𝑥 = 1,

𝑐′𝑦𝑦 = sin2 𝜃 = 𝑛2
𝑧 ,

𝑐′𝑧𝑧 = cos2 𝜃 = 𝑛2
𝑦 ,

𝑐′𝑦𝑧 = −2 sin 𝜃 cos 𝜃 = 2𝑛𝑦𝑛𝑧 ,
𝑐′𝑧 = −4𝑝 sin 𝜃 = −4𝑝𝑛𝑧 .

(15)

5.2. Ellipsoid

The meridional section in the plane 𝑌𝑍 has equation (Fig. 3, Table 1):

𝑌2

𝑎2
𝑒

+ 𝑍2

𝑏2
𝑒

= 1 (16)

The non-zero coefficients of the revolution ellipsoid are 𝑐𝑥𝑥 = 1/𝑏2
𝑒, 𝑐𝑦𝑦 = 1/𝑎2

𝑒, 𝑐𝑧𝑧 = 1/𝑏2
𝑒,

𝑐0 = − 1. We have:



Fig. 3. The ellipse in a centered reference system (𝑋,𝑌, 𝑍). The local reference system
is (𝑥, 𝑦, 𝑧).

• The design parameters are 𝑝, 𝑞, 𝜃.

• The major axis is 𝑎𝑒 = (𝑝 + 𝑞)/2; the minor axis is 𝑏𝑒 =
√
𝑝𝑞 sin 𝜃, the foci are at at

(0,±𝑐𝑒, 0) with 𝑐𝑒 =
√︁
𝑎2
𝑒 − 𝑏2

𝑒, and the eccentricity is 𝜖 = 𝑐𝑒/𝑎𝑒.

• The mirror center is at: 𝑋𝑐 = 0, 𝑌𝑐 = (𝑝2 − 𝑞2)/(4𝑐𝑒) = (𝑝 − 𝑞)/(2𝜖), 𝑍𝑐 =

−𝑏𝑒
√︁

1 − (𝑌𝑐/𝑎𝑒)2 = −𝑝𝑞 sin(2𝜃)/(2𝑐𝑒) = −𝑏2
𝑒/(𝑐𝑒 tan 𝜃) (see, e.g., Ref. [8]).

• The (non-normalized) normal at the mirror center is aligned with N = (0,−2𝑌𝑐/𝑎2
𝑒,−2𝑍𝑐/𝑏2

𝑒) =
(0, (𝑞2 − 𝑝2)/(2𝑎2

𝑒𝑐𝑒), 2/(𝑐𝑒 tan 𝜃)).

• The unit normal vector is n = (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧) = N/|N|.

• The angle from n to 𝑍 axis is Θ = arcsin(𝑛𝑦).

• We define 𝐴 = 1/𝑏2
𝑒, 𝐵 = 1/𝑎2

𝑒. The non-zero conic coefficients of the ellipsoid in the
local mirror reference frame are

𝑐′𝑥𝑥 = 𝐴 = 𝑏−2
𝑒 ,

𝑐′𝑦𝑦 = 𝐴𝑛2
𝑦 + 𝐵𝑛2

𝑧 = (𝑛𝑦/𝑏𝑒)2 + (𝑛𝑧/𝑎𝑒)2,

𝑐′𝑧𝑧 = 𝐴𝑛2
𝑧 + 𝐵𝑛2

𝑦 = (𝑛𝑧/𝑏𝑒)2 + (𝑛𝑦/𝑎𝑒)2,

𝑐′𝑦𝑧 = 2𝑛𝑦𝑛𝑧 (𝐵 − 𝐴) = 2𝑛𝑦𝑛𝑧 (1/𝑎2
𝑒 − 1/𝑏2

𝑒),
𝑐′𝑧 = 2(𝐴𝑛𝑧𝑍𝑐 + 𝐵𝑛𝑦𝑌𝑐) = 2(𝑛𝑧𝑍𝑐/𝑏2

𝑒 + 𝑛𝑦𝑌𝑐/𝑎2
𝑒).

(17)

5.3. Hyperboloid

The meridional section in the 𝑌𝑍 plane has equation (Fig. 4, Table 1):

𝑌2

𝑎2
ℎ

− 𝑍2

𝑏2
ℎ

= 1 (18)



Fig. 4. The hyperbola in a centered reference system (𝑋,𝑌, 𝑍). The local reference
system is (𝑥, 𝑦, 𝑧)

The non-zero coefficients of the revolution hyperboloid1 are 𝑐𝑦𝑦 = 1/𝑎2
ℎ
, 𝑐𝑧𝑧 = 𝑐𝑥𝑥 =

−1/𝑏2
ℎ
, 𝑐0 = −1. The major axis is 𝑎ℎ = |𝑝 − 𝑞 |/2, the foci are at (0,±𝑐ℎ, 0), with 𝑐ℎ =

(1/2)
√︁
𝑝2 + 𝑞2 − 2𝑝𝑞 cos(2𝜃); the minor axis (imaginary) is 𝑏ℎ =

√︃
𝑐2
ℎ
− 𝑎2

ℎ
. Two configurations

are possible depending on the design parameters 𝑝, 𝑞, 𝜃:
i) Large 𝑝: 𝑝 > 𝑞 (violet path in Fig. 4), where:

• The mirror center is at 𝑋𝑐 = 0, 𝑌𝑐 = (𝑝2 − 𝑞2)/(4𝑐ℎ), 𝑍𝑐 = 𝑏
√︁
(𝑌𝑐/𝑎ℎ)2 − 1.

• The (non-normalized) normal at the mirror center is aligned with N = (0,−2𝑌𝑐/𝑎2
ℎ
, 2𝑍𝑐/𝑏2

ℎ
).

• The unit normal vector is n = (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧) = N/|N|

• The angle from n to 𝑍 axis is Θ = arcsin(𝑛𝑦).

ii) Large 𝑞: 𝑞 > 𝑝 (green path in Fig. 4), where:

• The mirror center is at 𝑋𝑐 = 0, 𝑌𝑐 = (𝑝2 − 𝑞2)/(4𝑐ℎ), 𝑍𝑐 = 𝑏
√︁
(𝑌𝑐/𝑎ℎ)2 − 1.

• The (non-normalized) normal at the mirror center is N = (0, 2𝑌𝑐/𝑎2
ℎ
,−2𝑍𝑐/𝑏2

ℎ
).

• The unit normal vector is n = (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧) = N/|N|.

• The angle from n to 𝑍 axis is Θ = − arccos(𝑛𝑧).

We define 𝐴 = −1/𝑏2
ℎ

and 𝐵 = 1/𝑎2
ℎ
. The non-zero conic coefficients of the hyperboloid in

1As with the paraboloidal and ellipsoidal mirrors, We consider revolution surface around 𝑌 . This gives the two sheets
hyperboloid most relevant for optical elements. An alternative surface is produced by revolution around 𝑋 (one-sheet
hyperboloid).



the local mirror reference frame are2

𝑐′𝑥𝑥 = 𝐴 = −𝑏2
ℎ,

𝑐′𝑦𝑦 = 𝐴𝑛2
𝑦 + 𝐵𝑛2

𝑧 = −(𝑛𝑦/𝑏ℎ)2 + (𝑛𝑧/𝑎ℎ)2,

𝑐′𝑧𝑧 = 𝐴𝑛2
𝑧 + 𝐵𝑛2

𝑦 = −(𝑛𝑧/𝑏ℎ)2 + (𝑛𝑦/𝑎ℎ)2,

𝑐′𝑦𝑧 = 2𝑛𝑦𝑛𝑧 (𝐵 − 𝐴) = 2𝑛𝑦𝑛𝑧 (𝑏−2
ℎ − 𝑎−2

ℎ ),
𝑐′𝑧 = 2(𝐴𝑛𝑧𝑍𝑐 + 𝐵𝑛𝑦𝑌𝑐) = 2(−𝑛𝑧𝑍𝑐𝑏

2
ℎ + 𝑛𝑦𝑌𝑐/𝑎2

ℎ).

(19)

5.4. Degenerated surfaces

A very important conic in optics is the sphere of radius 𝑅. It can be obtained directly from
the ellipsoid Eqs. (17) with 𝑎 = 𝑏 = 𝑅, n = (0, 0, 1),X = (0, 0,−𝑅), therefore the non-zero
coefficients are

𝑐′𝑥𝑥 = 1,
𝑐′𝑦𝑦 = 1,
𝑐′𝑧𝑧 = 1,
𝑐′𝑧 = −2𝑅.

(20)

Another important surface is the plane, with equation −𝑧 = 0, therefore the only non-zero
coefficient is 𝑐′𝑧 = −1 (the minus guarantees that the normal n = − ▽ 𝑓 is upwards).

The 2D curved surface of revolutionary conics (paraboloids, ellipsoids and hyperboloids)
become cylinders (with parabolic, elliptical and hyperbolic sections, respectively) by making flat
the surface along the sagittal direction (𝑥). These surfaces that are flat in the sagittal direction
are easily obtained from the revolution surfaces discussed before (paraboloids, ellipsoids and
hyperboloids) by making zero the 𝑐𝑖 coefficients affecting the 𝑥 (i.e. 𝑐𝑥𝑥 = 𝑐𝑥𝑦 = 𝑐𝑥𝑦 = 𝑐𝑥 = 0).
Similarly, a cylinder with axis parallel to the 𝑦 axis (flat in the meridional direction) has zero
the coefficients affecting the 𝑦 (i.e. 𝑐𝑦𝑦 = 𝑐𝑥𝑦 = 𝑐𝑦𝑧 = 𝑐𝑦 = 0), but in these cases the cylinder
section is circular.

6. Discussion

6.1. Summary of equations for conics defined from design parameters parameters

In section 5 we obtained the coefficients of the conic in a non-centered system using roto-
translation of the conic expressed in a centered system. The coefficients of the conic in the
centered-system were calculated from the design parameters 𝑝, 𝑞, 𝜃. The rotation angle and
translation vector are expressed as a function of the design parameters and the centered conic
parameters. The position of the center and normal versor are summarized in Table 3, used for
calculating the conic coefficients (Table 4).

2the equations with parameters 𝐴 and 𝐵 are formally equal to those in Eqs. (17) for the ellipsoid. However, 𝐴 < 0 for
the hyperboloid and 𝐴 > 0 for the ellipsoid.



parabola (focusing) parabola (collimating) ellipse hyperbola 𝑝 > 𝑞 hyperbola 𝑝 < 𝑞

𝑋𝑐 0 0 0 0 0

𝑌𝑐 −𝑞 sin(2𝜃) 𝑝 sin(2𝜃) 𝑝2−𝑞2

4𝑐2
𝑒

𝑝2−𝑞2

4𝑐2
𝑒

𝑝2−𝑞2

4𝑐2
𝑒

𝑍𝑐 𝑞 cos2 𝜃 𝑝 cos2 𝜃 −𝑏𝑒
√︂

1 − 𝑌2
𝑐

𝑎2
𝑒

𝑏ℎ

√︂
𝑌2
𝑐

𝑎2
ℎ

− 1 𝑏ℎ

√︂
𝑌2
𝑐

𝑎2
ℎ

− 1

𝑁𝑥 0 0 0 0 0

𝑁𝑦 2𝑞 sin(2𝜃) −2𝑝 sin(2𝜃) −2𝑌𝑐
𝑎2
𝑒

=
𝑞2−𝑝2

2𝑎2
𝑒𝑐𝑒

−2𝑌𝑐
𝑎2
ℎ

2𝑌𝑐
𝑎2
ℎ

𝑁𝑧 4𝑎𝑝 4𝑎𝑝
−2𝑍𝑐

𝑏2
𝑒

= 2
𝑐𝑒 tan 𝜃

2𝑍𝑐

𝑏2
ℎ

−2𝑍𝑐

𝑏2
ℎ

𝑛𝑥 0 0 0 0 0

𝑛𝑦 cos 𝜃 sin 𝜃 𝑁𝑦/|N| 𝑁𝑦/|N| 𝑁𝑦/|N|

𝑛𝑧 − cos 𝜃 sin 𝜃 𝑁𝑧/|N| 𝑁𝑧/|N| 𝑁𝑧/|N|

Θ 𝜋
2 − 𝜃 −( 𝜋2 − 𝜃) arcsin 𝑛𝑦 arcsin 𝑛𝑦 − arccos 𝑛𝑧

Table 3. Coordinates of the center (𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐), the normal N = (𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧), the
normalized normal n = (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧) with respect to the centered system for the parabola,
ellipse and hyperbola. The angle Θ (from n to the 𝑍 axis) is also reported.

Coefficient paraboloid ellipsoid hyperboloid

𝑐𝑥𝑥 1 1 1

𝑐𝑦𝑦 𝑛2
𝑧 𝑛2

𝑦 +
𝑏2
𝑒

𝑎2
𝑒
𝑛2
𝑧 𝑛2

𝑦 −
𝑏2
ℎ

𝑎2
ℎ

𝑛2
𝑧

𝑐𝑧𝑧 𝑛2
𝑦 𝑛2

𝑧 +
𝑏2
𝑒

𝑎2
𝑒
𝑛2
𝑦 𝑛2

𝑧 −
𝑏2
ℎ

𝑎2
ℎ

𝑛2
𝑦

𝑐𝑥𝑦 0 0 0

𝑐𝑦𝑧 2𝑛𝑦𝑛𝑧 (or −2𝑛𝑦𝑛𝑧) −2𝑛𝑦𝑛𝑧 (1 − 𝑏2
𝑒

𝑎2
𝑒
) −2𝑛𝑦𝑛𝑧 (1 + 𝑏2

ℎ

𝑎2
ℎ

)

𝑐𝑥𝑧 0 0 0

𝑐𝑥 0 0 0

𝑐𝑦 0 0 0

𝑐𝑧 −4 𝑎𝑝

𝑛𝑧
2(𝑛𝑧𝑍𝑐 + 𝑏2

𝑒

𝑎2
𝑒
𝑛𝑦𝑌𝑐) 2(𝑛𝑧𝑍𝑐 −

𝑏2
ℎ

𝑎2
ℎ

𝑛𝑦𝑌𝑐)

𝑐0 0 0 0

Table 4. Summary of conic coefficients as a function of the design parameters from
section 5 normalized to 𝑐𝑥𝑥 = 1. In this table, n = (0, 𝑛𝑦 , 𝑛𝑧) is the normalized normal
to the surface at the mirror pole (with coordinates (0, 𝑌𝑐 , 𝑍𝑐) in centered-coordinates).

In previous works, we studied parabolas [7], ellipses [8] and hyperbolas [15] in non-centered
systems, and deduced the equation of the optical surface from first principles. We applied Fermat
principle to get the equation of the paraboloid, and ellipsoid, and geometrical principles for the
hyperboloid. From these works, we summarize in Table 5 the conic coefficients as a function of
the design parameters for the paraboloid, ellipsoid, and hyperboloid surfaces.



Coefficient paraboloid ellipsoid hyperboloid

𝑐𝑥𝑥 1 1 1

𝑐𝑦𝑦 𝑠2 𝑠2 𝑠2

𝑐𝑧𝑧 𝑐2 1 −
(
𝑠
𝑝−𝑞
𝑝+𝑞

)2
1 −

(
𝑠
𝑝+𝑞
𝑝−𝑞

)2

𝑐𝑥𝑦 0 0 0

𝑐𝑦𝑧 2𝑐𝑠 (or −2𝑐𝑠) −2𝑠𝑐 𝑞−𝑝

𝑞+𝑝 −2𝑠𝑐 𝑞+𝑝
𝑞−𝑝

𝑐𝑥𝑧 0 0 0

𝑐𝑥 0 0 0

𝑐𝑦 0 0 0

𝑐𝑧 −4𝑠𝑞 (or − 4𝑠𝑝) −4𝑠 𝑝𝑞

𝑞+𝑝 −4𝑠 𝑝𝑞

𝑞−𝑝

𝑐0 0 0 0

Table 5. Conic coefficients as a function of the design parameters from Refs. [7, 8, 15].
𝑐 = cos 𝜃, and 𝑠 = sin 𝜃. For the focusing paraboloid (𝑝 = ∞), use the first option; for
the collimating paraboloid (𝑞 = ∞), use the option in brackets).

For consistency, we have checked that the coefficients calculated with the expressions from
Tables 4 and 5 give the same results.

6.2. Numerical calculations.

The Eqs. (10) is a general procedure very easy to implement on a computer. An example of
calculation of the local coefficients of an ellipsoidal mirror is in Fig. 5.



import numpy as np

def rotate_and_translate_coefficients(coe_list,R_M,T):
axx, ayy, azz, axy, ayz, axz, ax, ay, az, a0 = coe_list

A2 = np.array([[axx,axy/2,axz/2],
[axy/2,ayy,ayz/2],
[axz/2,ayz/2,azz]])

A1 = np.array([ax,ay,az])
A0 = a0

B2 = np.dot(R_M, np.dot(A2,R_M.T)) # first equation 6.29
B1 = np.dot(R_M, A1) - 2 * np.dot(B2,T) # 2nd equation 6.29
B0 = A0 + np.dot(T.T, (np.dot(B2, T) - \

np.dot(R_M, A1))) # 3rd equation 6.29

return [ B2[0,0], B2[1,1], B2[2,2],
B2[0,1] + B2[1,0], B2[1,2] + B2[2,1], B2[0,2] + B2[2,0],
B1[0], B1[1], B1[2], B0]

# factory parameters (input)
p = 10.0
q = 3.0
theta = 0.003

# ellipse parameters
a = (p + q) / 2
b = np.sqrt(p * q) * np.sin(theta)
c = np.sqrt(a**2 - b**2)

# mirror center
yc = (p ** 2 - q ** 2) / 4 / c
zc = -b * np.sqrt(1 - yc ** 2 / a ** 2)
X = np.array([0, yc, zc])

# normal to the mirror at center
N = np.array((0, -2 * yc / a ** 2, -2 * zc / b ** 2))
n = N / np.sqrt((N**2).sum())

# angle between N and Z
Theta = np.arcsin(n[1])

# rotation matrix
R_M = np.array([[1,0,0],

[0,np.cos(Theta),-np.sin(Theta)],
[0,np.sin(Theta),np.cos(Theta)]])

# translation vector
T = -np.dot(R_M,X)

# coefficients of the ellipsoid at the centered system
c_in = [1/b**2,1/a**2,1/b**2,0,0,0,0,0,0,-1]

# transformed coeffcients
c_out = rotate_and_translate_coefficients(c_in,R_M,T)

print("coeffs in centered frame: ", c_in)
print("coeffs in local frame: ", c_out)

# results of run
# coeffs in centered frame:
# [3703.715,0.02367,3703.715,0,0,0,0,0,0,-1]
# coeffs in local frame:
# [3703.715,0.0333353,3703.705,0,11.966,0,0,0,-102.564,0]

Fig. 5. Example python code to calculate the conic coefficients of an ellipsoid mirror in
the centered system, and transform them to the local reference system. The function
rotate_and_translate_coefficients implements Eqs. (10). The main
code implements some of the the Eqs. in sections 3 and 5.2.

6.3. Misalignments and tolerances

The general transformation of the conic coefficients in Eq. (10) can be used for studying possible
misalignments in an optical system. A maximum accepted misalignment can be considered as a
tolerance. We want to study, for example, the tolerances of an x-ray ellipsoidal mirror. We set
design parameters to 𝑝=30 m, 𝑞=3 m and 𝜃=1 deg. The conic coefficients (Table 4) are [36.4793,
0.0111111, 36.4719, 0.0, 1.04164, 0.0, 0.0, 0.0, -6.9453, 0.0]. Suppose we want to study the



Fig. 6. Ray tracing calculation of the image size (relative increment with respect to the
ideal size of 0.1 µm) the image as a function of the misalignment in yaw angle 𝛿. For
each value of 𝛿 a simulation is done using the transformed conic coefficients (see text).
Calculations are done in the ray tracing program SHADOW [9].

tolerances on the yaw angle 𝛿, a rotation around the 𝑧 axis of matrix:

𝑅𝑀,𝑦 (𝛿) =


cos 𝛿 0 sin 𝛿

0 1 0

− sin 𝛿 0 cos 𝛿


. (21)

The translation t is zero. A ray tracing simulation is designed using a source with Gaussian-shaped
beam size of 1 µm root mean square (r.m.s) and a divergence 10 µrad r.m.s, thus illuminating
about 170 mm of the mirror footprint. A ray tracing of the optical system is done for different
values of 𝛿, and the r.m.s relative size increase of the image is displayed in Fig. 6 for the 𝑥

(horizontal) and 𝑧 (vertical) directions. If we accept an increase in relative size of 10%, the plot
indicates a maximum tolerance in the yaw angle of about 16 m deg.

7. Summary and conclusions

We have revisited the 3D conics used as optical surfaces in optics in general non-centered
reference systems, like grazing optics. We deduced how these coefficients transform for a generic
roto-translation. We then deduced the 10 coefficients as a function of the design parameters
(𝑝, 𝑞, 𝜃) for paraboloids, ellipsoids and hyperboloids. We consider spheres, planes, and a family
of cylinders as particular degenerated cases. We illustrate the implementation of these coefficients
and their transforms in a computed code in the python programming language. These results are
of great utility for ray tracing simulations.

While the descriptions can be cumbersome, once understood in context, these optical systems
are both efficient and mathematically elegant. Stemming from an understanding of these



foundational shapes, or abandoning them entirely with freeform elements, innovation and the
increasing demands of scientific applications will dictate the direction of future designs.
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