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The diaboloid is a reflecting surface that converts a spherical wave to a

cylindrical wave. This complex surface may find application in new Advanced

Light Source bending-magnet beamlines or in other beamlines that now use

toroidal optics for astigmatic focusing. Here, the numerical implementation of

diaboloid mirrors is described, and the benefit of this mirror in beamlines

exploiting diffraction-limited storage rings is studied by ray tracing. The use of

diaboloids becomes especially interesting for the new low-emittance storage

rings because the reduction of aberration becomes essential for such small

sources. The validity of the toroidal and other mirror surfaces approximating the

diaboloid, and the effect of the mirror magnification, are discussed.

1. Introduction

In the development of synchrotron radiation sources, bright-

ness has always been a key metric, and as such the strongest

emphasis is on insertion device performance. Bending-magnet

development has been a secondary consideration, yet these

white-light sources hold important advantages for a range of

X-ray experiments, such as Laue diffraction, energy-dispersive

EXAFS (extended X-ray absorption fine structure) and

other experiments that take advantage of a wide energy

spectrum. In other areas, the agility in photon energy offered

by monochromated bending-magnet radiation is a great

advantage.

Now, with the advent of fourth-generation multi-bend

achromat (MBA) synchrotrons with smaller electron beam

widths, bending-magnet sources are becoming even more

attractive for a segment of synchrotron experiments. However,

a technical challenge is preserving the brightness while

imaging a significant horizontal aperture. With shrinking

source sizes, preserving the source brightness requires a

reduction in the range of tolerable shape and slope errors: new

shape optimizations need to be found. Advances in aspheric

mirror fabrication and metrology increase the breadth and

feasibility of potential solutions.

With undulator sources and their narrow divergence angles,

we have the luxury of using only tangentially curved optics for

focusing in both horizontal and vertical planes. However, for

bending-magnet sources, with their wide horizontal fan, to

collect a reasonable aperture, we have to use sagittally curved

optics. This could be as in a crystal monochromator with a

sagittally curved second crystal, or with a sagittally focusing

cylindrical or toroidal mirror.

At the Advanced Light Source (ALS), we adopted toroidal

mirrors for protein crystallography beamlines, due to the
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robustness of the optical system. We found that a specific

configuration with two mirrors and a monochromator in

between, all deflecting the vertical plane, could preserve

brightness and eliminate coma aberrations. A tangentially

collimating pre-mirror assures negigible vertical divergence

at the monochromator entrance, thus optimizing its energy

resolution, and a toroidal mirror downstream of the crystal

monochromator refocuses the beam at the focal plane. The

optimal design focuses from infinity in the vertical direction

and from the real source in the horizontal direction with a

1:2 magnification.

This arrangement was used in ALS superbend beamlines, as

originally described by MacDowell et al. (2004). At the time,

the horizontal source size was 100 mm root mean square

(RMS) and the residual aberrations in the image produced by

a toroidal mirror were far less. Following an upgrade of the

ALS in 2013, the horizontal photon beam size was reduced

(Steier et al., 2014) to 26 mm RMS. The residual aberrations

were tolerable, but cause a factor of two decrease in bright-

ness. The ALS upgrade project, now in progress, will reduce

the horizontal beam size to 10 mm RMS. At this size, the

residual aberrations of optical systems based on toroids will no

longer be acceptable, and new types of brightness-preserving

optics are required.

For many applications we need good monochromatization

and tunability, such as is provided by the classical, collimated

double-crystal monochromator. To preserve the source

brightness, the task is therefore to design a single optical

element that can accept light from infinity in the vertical

direction (i.e. vertically collimated) and from the real

source in the horizontal direction, and focus that light to

a point, unifying two properties not found in a single

canonical shape.

Because a parabolic surface can provide vertical collimation

of a point source in one direction, the central vertical cross-

section (i.e. the tangential shape) of the mirror will be para-

bolic. The sagittal curvature provides point-to-point focusing

for rays outside of this central plane of incidence.

Such a surface was first described by McKinney et al. (2009)

and named the diaboloid, to indicate the probable difficulty in

making this type of optical element. The surface was repre-

sented with a polynomial series, derived from classical optical

path function analysis. This work showed the expected,

optimal focusing properties and the benefits for small, high-

brightness beams with a large horizontal fan angle. McKinney

et al. also showed that at 1:2 magnification a toroidal mirror

comes closest to the ideal diaboloid shape, minimizing,

although not eliminating, residual aberrations.

Although the idea is to replace the toroidal mirrors in ALS

protein crystallography superbend beamlines with this new

type of mirror, the application goes further than this: the

diaboloid allows us to demagnify more strongly than before.

One such example is in a high-pressure-science beamline

currently using a 1:2 magnification toroidal mirror, further

demagnified to a few-micrometer focus using a Kirkpatrick–

Baez (K–B) mirror pair (Kirkpatrick & Baez, 1948). In an

updated, diaboloid-based optical system, the K–B mirrors

become unnecessary and the single diaboloid mirror will focus

directly to approximately 3 mm spot size, increasing flux and

image quality while decreasing complexity.

It is important to note that until recently, the fabrication of

such complex surfaces has not been possible at the error levels

that we require. For a typical application at the upgraded ALS,

the mirror-to-source distance is 20 m, the mirror-to-focal

plane is 10 m (magnification 1:2), and so, with a 7 mm vertical

source size RMS, including angle doubling on reflection, the

tangential slope error tolerance is 0.17 mrad RMS. The sagittal

slope error tolerance is 34 mrad due to the forgiveness factor.

The tangential tolerance is extremely challenging, but mainly

limited by metrology. Local area correction, and stitching-

interferometer-based metrology, have led to the creation of

one-dimensional curved optics with significantly smaller slope

errors (Yamauchi et al., 2002).

A difficulty is the availability of high-accuracy metrology to

measure steeply curved optics. One possible solution is to use

metrology based on computer generated hologram (CGH)

reference beams (Wyant, 2013; Poleshchuk et al., 2009), as now

widely used in free form optics fabrication. Recent progress in

metrology techniques (Nistea et al., 2019) also supported by

international collaborations, e.g. Europe’s MooNpics, are

actively working to improve high-accuracy figure error

measurements on a variety of surfaces. However, the

metrology with 3D aspherical X-ray optics, in particular strong

sagittal curvature, remains a very difficult task. Advances in

fabrication and metrology make these optics feasible now.

In Section 5, we investigate various approximations to the

diaboloid which may be easier to manufacture.

In the 1:2 magnification case, the deviation of the diaboloid

surface from a toroid is approximately 2 mm for the extreme

sagittal positions.1 Therefore, it may be possible to manu-

facture them using gradient deposition in the sagittal direc-

tion. As a toroid can be produced from a sagittal cylinder by

bending, we know from experience that the tangential slope

can achieve the error levels required.

To study diaboloid mirrors in beamline optical simulations,

we created a tool in the Oasys environment (Rebuffi &

Sanchez del Rio, 2017) that implements diaboloid surfaces

and their approximations (Yashchuk et al., 2020, 2021). The

new Oasys widget (Section 2.1) sends the created surface to

the ray-tracing code SHADOW (Sanchez del Rio et al., 2011).

We used this application to make simulations of the ALS

beamline 12.2.2 (Section 3) where the original toroid is

replaced with a diaboloid and the performance is compared

for the present ALS storage ring and for the future upgraded

ALS. Section 4 investigates a possible upgrade of this beam-

line using high demagnification and analyzes the feasibility

of using a simpler parabolic cone to replace diaboloids. The

use of surfaces that approximate the diaboloid is analyzed

in Section 5.
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1 This is valid for a grazing angle � = 2 mrad on a 10 mm-wide mirror of length
200 mm as will be seen in Fig. 8(a). If the diaboloid is approximated by a cone
(Fig. 8b), or the grazing angle is increased (Fig. 7e), the difference of 2 mm is
valid over a mirror width of 20 mm.



2. Definition and implementation of the diaboloid
surface

For practical purposes we want to define the diaboloid surface

as a function of the focal distances, p and q (p is the source-to-

mirror distance, q is the mirror-to-image distance), and the

grazing incidence angle, �. The diaboloid can be placed in

two configurations: (i) ‘collimating’ to convert a spherical

wave into a cylindrical wave (geometrically, a point-to-line

focusing), and (ii) ‘focusing’ to convert a cylindrical wave into

a spherical one (or segment-to-point focusing). The latter

(Fig. 1) is the usual configuration in synchrotron beamlines,

where the main purpose is to refocus a beam that is vertically

collimated and horizontally diverging.

The equation of the diaboloid in the ‘collimating’ config-

uration is (see Appendix A)

zðx; yÞ ¼ q sin 2� �
�
ðq sin 2�Þ2 þ 2p2

þ 2pq ð1Þ

þ 2ðpþ q cos 2�Þy� 2ðpþ qÞ x2 þ ðyþ pÞ2
� �1=2�1=2

:

The mirror height z = 0 at the mirror center position, x,y = 0,

as expected. The tangential profile (x = 0) is a parabola with

focal length f = ð1� cos 2�Þ q=2. For small angles,

(cos 2� ’ 1� 2� 2) and jyj � q gives z ’ 2�q + �y with slope

in the center dz/dy = �. The sagittal section (y = 0) can be

approximated by an ellipse with semi-axes b = q sin 2� and

a = b[q/(p + q)]1/2 (see Appendix A).

For ray-tracing calculations, it is convenient to obtain the

numerical mesh as a function of a mirror-based coordinate

system (X,Y,Z) (Fig. 1). This system has the origin in the

center of the mirror, the Y-axis tangent to the surface origin

in the direction of the beam propagation, the X-axis tangent

to the surface origin in the sagittal direction, and the Z-axis

normal to the surface at the origin. In most practical cases

for X-ray optics, the grazing-incidence � is small, therefore

equation (1) can be expressed in the X,Y,Z frame by rotating

the surface about the X-axis to achieve zero slope at the origin

(i.e. detrending the plane zplane = y�). This is done numerically

after evaluating the surface using equation (1). The exact,

explicit, expression of the diaboloid Z(X, Y) can be obtained

from the rotation of equation (1) by an angle � (Yashchuk et

al., 2021), resulting in a fourth-degree polynomial equation

F(X,Y,Z) = 0. The explicit equation is therefore obtained by

solving this equation for any point in the (Xi ,Yj) mesh.

The simplest approximation of the diaboloid is the toroid,

defined by circular cross-sections with tangential and sagittal

radii at the origin, Rt and Rs, respectively. These values are

known from Coddington’s equations for focusing mirrors,

1

p
¼

2

Rt sin �
;

1

p
þ

1

q
¼

2 sin �

Rs

: ð2Þ

A surface with a closer approximation to the diaboloid has a

parabolic tangential profile along the sagittal centerline (X =

0), and circular cross-sections with radii varying linearly with

Y, in the sagittal direction (Yashchuk et al., 2021),

RsðYÞ ’
2pq cos2 � sin �

pþ q
�

cos � sin � ð2p cos2 � � qÞ

pþ q
Y: ð3Þ

The central sagittal radius RsðY ¼ 0Þ = pq sin � cos2 �=ðpþ qÞ

is close to the radius given by the Coddington equation (2),

differing by a factor cos2 �.

2.1. Numerical implementation and testing

A graphical interface or widget in the Oasys environment

creates the diaboloid surface and its approximations in the

form of a numerical mesh. The user selects the type of surface

to calculate (diaboloid or other approximations), the mirror

geometry (size and sampling) and the focusing arrangement

(conversion from cylindrical to spherical wave or vice versa).

The diaboloid is implemented in an approximate way [using

equation (1) affected by a linear detrending y� to account for

the axes rotation] or in an exact form by solving numerically

its implicit quartic equation (Yashchuk et al., 2021) using

the FQS Python library by N. Krvavika (https://github.com/

NKrvavica/fqs). The interface also allows removal of the

matching toroid from the calculated surface to visualize and

use the aspherical components. The surface is written to an

hdf5 formatted file, standard for Oasys surfaces. In this format,

the numerical surface can be loaded into various Oasys

applications, like the ray-tracing tool ShadowOui (Rebuffi &

Sanchez del Rio, 2016), and wave-optics codes. A view of the

interface is shown in Fig. 2.

To evaluate the accuracy of the calculations, we ray-traced

an isolated diaboloid mirror. The simpler, point-to-segment,

focusing configuration is chosen, with p = 29.3 m, q = 19.53 m

and � = 4.5 mrad. A point source was modeled with divergence

large enough to fully illuminate the mirror dimensions: length

L = 200 mm and width W = 20 mm.

The expected result at the focal position is a line focus

(segment) with zero horizontal width (beam focused in hori-

zontal) and a vertical length of L sin � (collimated in vertical,

and considering full illumination of the mirror). Ray-tracing

focal images are shown in Fig. 3 for a diaboloid calculated with

the two mentioned methods [exact solution and the detrended

equation (1)]. The intensity profile along the vertical direction

has a non-uniform distribution due to the beam intensity

projected on the mirror surface with a grazing angle. This

vertical intensity profile is invariant when the beam is
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Figure 1
Schematic (vertical section) of the reference frames: mirror-related
(X, Y,Z) used for numerical implementation, and mirror-canonical
(x, y, z) where the diaboloid shape takes the form of equation (1).



propagated a long distance downstream from the image

position, thus verifying the good collimation of the beam in

the vertical plane. Both numerical surfaces produce a narrow

horizontal focus without aberration tails. However, some

residual width is observed in the calculation: 0.3 nm for the

exact diaboloid equation and 93 nm for the approximated one.

The 0.3 nm residual arises from the finite precision and from

SHADOW’s use of iterative algorithms to find ray intercepts.

The approximate diaboloid’s 93 nm residual comes from the

linear detrending of the basal plane, replacing an exact rota-

tion. We believe that this accuracy is sufficient for all current,

practical implementations, owing to the finite source sizes of

10 mm to 50 mm. The approximate solution gives us an intui-

tive and simple direct way to numerically evaluate and

visualize the surface.

3. Ray tracing the ALS beamline 12.2.2

We analyze here the potential use of a diaboloid mirror to

replace the toroid and upgrade the optical design of ALS

beamline 12.2.2 (Clark et al., 2012; MacDowell et al., 2004).

The beamline and its bending-magnet source are evaluated at

E = 30 keV photon energy. We consider three source cases:

(i) a point source; (ii) the ALS ring, with �x = 26 mm, �y =

10 mm, electron energy Ee = 1.9 GeV, magnetic field B =

5.28 T; and (iii) the ALS-U ring, with �x = 10 mm, �y = 7 mm,

Ee = 2.0 GeV and B = 3.1 T.

Currently, the beamline uses a plane-parabola M1, and a

toroidal M2. M1 vertically collimates the beam to optimize

the monochromator performance (not simulated). M1 has

p1 = 6.500 m from the source, and q1 =1 (L = 900 mm long,
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Figure 3
Comparison of images produced by two surfaces: horizontally focusing and vertically collimating. (a) Exact diaboloid implementation (solving quartic
equation), and (b) approximated implementation [equation (1) detrended with zplane = �Y]. The calculated FWHM values are 0.3 nm and 93 nm,
respectively.

Figure 2
View of the interface to create the numerical sampling of the diaboloid and related surfaces (‘Diaboloid’ widget in Oasys/Syned).



� = 2 mrad). M2 focuses the vertically collimated, horizontally

diverging beam to the exit slit. M2 has p2 = 18.800 m from the

source and q2 = 8.075 m (L = 800 mm, W = 20 mm wide, � =

2 mrad). The exit slit (focal plane) is at D = 26.875 m from the

source. The M2 magnification M = q2 /p2 = 0.43 is close but not

exactly matching the optimal 1:2 toroid geometry (MacDowell

et al., 2004).

Fig. 4 compares the images produced by the three different

sources and two mirror systems described above: toroid and

diaboloid. With the current ALS case (row 1), the diaboloid

eliminates the tails but the reduction of the full width at half-

maximum (FWHM) is only by a factor of two in the vertical

direction, and less in the horizontal. Considering that the

fabrication of diaboloid mirrors is still challenging, this mild

improvement in focusing properties justifies the present use of

toroids. However, for the ALS-U source (row 2), focusing in

the vertical direction gains a factor of three improvement in

FWHM with the diaboloid, and eliminates the tails. In this

case, we believe the diaboloid would provide a significant

benefit. Row 3 shows the properties of these two optical

systems with an ideal point source.

4. The use of diaboloid for high demagnification

Aberrations from the toroidal M2 increase as the magnifica-

tion ratio changes away from the 1:2 condition. In an effort to

achieve smaller spot sizes at the exit slit, we compare higher

demagnification configurations. The existing toroid-containing

design is extended for a reduction of the magnification ratio,

M = q/p, and compared with an equivalent diaboloid design.

We maintain a fixed M2 position (p), so the distance to the exit

slit (q) and the length of the beamline must be reduced.

Fig. 5 shows ray-tracing simulations with M reduced (from

0.43) to two specific values, 0.20 (1:5) and 0.10 (1:10). Relative

to the small, Gaussian spots produced by the diaboloid,

aberrations from the toroidal mirrors render these config-

urations unworkable.

To study the aberrations in more detail, ray-tracing calcu-

lations were performed for the ALS-U source, scanning

the magnification factor and extracting the focal dimensions,

calculating both the � (RMS) and the FWHM of the intensity

distribution. A Gaussian distribution would show a ratio

of FWHM/� of 2.35. The presence of aberrations rapidly

increases � relative to the FWHM. The calculations are shown

in Fig. 6.

Normalizing the focal size to the magnification allows us

to visualize the broadening effects of the aberrations: the

difference between the toroid and the diaboloid is apparent.

Where � exceeds the FWHM, the aberrations are considered

to be large. The toroidal mirror’s radial aberrations �r =

ð�2
h þ �

2
vÞ

1=2 (sub-indices h, v and r refer to horizontal, vertical

and radial directions, respectively) are minimized for M = 0.5,

the 1:2 case, which is the ‘working condition’ for most ALS

beamlines using toroids in this manner (MacDowell et al.,

2004). For the diaboloid [Fig. 6(b)], the situation is different:

for most of the range (M > 0.2), the lines are almost constant

and the � values are smaller than the FWHM by a ratio

approaching 2.35. The diaboloids behave as ideal focusing

optics.

5. Study of mirror shapes that approximate the
diaboloid

With its parabolic and elliptical cross sections, the diaboloid is

a highly aspherical surface. Fabrication and metrology within

the required accuracy levels are challenging technological

problems. For this reason, we believe that the most favorable

diaboloid shapes for manufacture are those that come closest

to toroidal. With circular cross sections in both directions,
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Figure 4
Focal image produced by a system of two mirrors: M1 (collimating
parabola) and M2 represented by (a) a toroid, or (b) a diaboloid. Row 1:
bending-magnet source in the current ALS storage ring. Row 2: the
future, upgraded ALS-U ring. Row 3: ideal point source. The FWHM of
the intensity distributions are written in the graphic titles. The image
contrast is set on a logarithmic scale for better visibility.



toroids can be manufactured with high accuracy. To assess

the manufacturing feasibility, we study the departure of the

diaboloid from the toroidal surface with radii from equation

(2). The Oasys diaboloid was used to subtract a toroid from

the diaboloid, point-by-point, for comparison.

In Fig. 7 (top) we have analyzed diaboloid surfaces for three

magnification ratios, M = 0.2, 0.5 and 1.0 (1:5, 1:2 and 1:1,

respectively), with 2 mrad grazing angle and a fixed horizontal

source distance, p = 20 m. In each case the toroid has been

subtracted. Some sagittal profiles are also shown. The profiles

at the center (Y = 0) and at Y = �100 mm present a similar

shape (an inverted ‘U’), with a flat part at the middle

(|Y | < 5 mm).

The change of height goes from about 100 mm for M = 1:5

to 6 mm for M = 1:1. At the 1:2 magnification condition, for

a grazing angle of 2 mrad as used in ALS beamline 12.2.2

[Fig. 7(b)], the maximum difference from the toroidal shape is

25 mm. For a grazing angle of 5 mrad as used in the protein

crystallography beamlines [Fig. 7(e)], the maximum difference

is 1.4 mm and the cross-sectional shape difference is almost

uniform in the interval |Y | < 200 mm along the tangential

direction.

5.1. Considerations for diaboloid fabrication

We observe that in the 5 mrad incidence case the conversion

of a cylindrical cross-section into an elliptical one, moving

from the toroid to the diaboloid, could be done with a varied-

thickness coating. The addition of a few micrometers of

sputtered coating material on the Si substrate is practical and

has been demonstrated (Morawe et al., 2019). In addition, at

the 1:2 magnification condition, the mirror is close to a long

elliptical cylinder. This should allow convenient ways to check

the mirror height error using optical interferometry. More-

over, experience with long cylinders has shown that they can

be produced with low tangential slope errors commensurate

with the applications we envision.

The deposition of a thin correcting layer on the cylindrical

substrate seems to be an attractive way to make diaboloids, at

low glancing angles. As sagittal slope errors are typically small,

and the slope error tolerance in this direction is higher by sin �,
a method to create a diaboloid from a toroid is to first produce

a sagittally varied coating on a flat substrate, or on a set of flat

witness pieces along the length of the mirror. The variation in

thickness could be created by a shaped mask in front of the

sputtering source as the mirror is translated. Following this,

the witness pieces will be examined by plane wave inter-

ferometry. This is now straightforward as the deviation from

flat is small.

This allows calibration of the velocity of the mirror motion

under the sputtering source, in order to obtain the correct

thickness at the edge of the aperture. Based on the highly

repeatable deposition rates that can be produced with

magnetron sputtering, we believe that we will be able to obtain

the thickness at the edge within a few percent of the target,

which is adequate in terms of an effective slope error.
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Figure 5
Image produced by the beamline for two magnification values: 1:5 (row 1,
top) and 1:10 (row 2, bottom) using for M2 (a) a toroid and (b) a
diaboloid.

Figure 6
Calculated horizontal, vertical and radial focal sizes for a range of
magnifications, measured by � and FWHM, and normalized to the
magnification. We compare (a) the toroidal M2 and (b) the diaboloid. The
normalized focal size should be constant for an ideal focusing system. The
ALS-U source is considered.



5.2. Ray-tracing the approximate solutions

We apply the manufacturing considerations to the case of

the beamline 12.2.2 after the ALS upgrade. The calculated

focal spot size is 14 mm � 42 mm (H � V) with a toroidal M2

mirror [Fig. 4(a2)], and is 10 mm � 18 mm with a diaboloid

[Fig. 4(b2)]. As the situation is close to the 1:2 magnification

and the incidence angle is 2 mrad, this is a promising case for

upgrading the mirror to an approximated diaboloid. Fig. 8(a)

shows the difference between the diaboloid and the toroid.

Two approximate solutions are studied by ray tracing. First,

using a substrate with circular sagittal cross-sections, with a

radius that changes linearly along the Y (tangential) direction,

Fig. 8(b), as indicated in equation (3). The second one would

consist of pre-shaping a cylinder with elliptical sagittal cross-

sections that matches the optimal sagittal profile at Y = 0

[Fig. 8(c)]. Such a surface could be manufacturable with

sufficient accuracy.

The spot size produced by the diaboloid is 10 mm � 18 mm

[Fig. 4(b2)]. The first approximation (cone bent to parabola)

produces a spot of 12 mm � 23 mm [Fig. 9(a)]. In the case that

this cone is degenerated into a cylinder, the size becomes

14 mm � 33 mm and an aberration tail appears in the vertical

direction [Fig. 9(b)]. This is due to this beamline being close

to, but not exactly at, 1:2 magnification (it is exactly M =

1:2.33). If using the second approximation (cylinder with

elliptical section) we obtain 16 mm � 38 mm with a strong

aberration tail, for the same reason [Fig. 9(c)]. In the hori-

zontal direction, sagittal elliptical cross-sections produce

larger focal spots [Fig. 9(c)] than those with circular cross-

sections [Figs. 9(a) and 9(b)]. This result may seem paradoxical

at a first view, but shows a cross-over between tangential and
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Figure 7
Height difference between the diaboloid and the toroid for two different grazing angles (2 and 5 mrad) and three magnifications (1:5, 1:2 and 1:1). The
values are shown in the image titles. For each image, five sagittal profiles at different Y values are shown. The simulations use a fixed horizontal source
distance, p = 20 m. In row 1, the toroid major radii Rt are 4 km, 10 km and 20 km, respectively; the minor radii Rs are 13.3 mm, 26.7 mm and 40 mm. In
row 2, the toroid major radii are 1.6 km, 4.0 km and 8.0 km, respectively; the minor radii are 33.3 mm, 66.6 mm and 100 mm.



sagittal directions; to improve the sagittal focus, it is preferred

to use the circular section but with changing curvature along

the tangential direction, rather than use the ideal sagittal

profile (ellipse) without change along the tangential direction.

We check now the beamline in an optimal 1:2 configuration

by setting q = 9.4 m. Here the diaboloid produces a spot of

12 mm � 22 mm (not shown), 13 mm � 26 mm for the cone

and the same for the circular cylinder [Fig. 9(d)], as expected

because for 1:2 magnification the cone degenerates in a

cylinder. The result for the elliptical cylinder is similar (not

shown), demonstrating that there is not much benefit in this

case to shape the cylinder with a more complicated elliptical

section.

In conclusion, the approximation of the diaboloid by a

simple circular cylinder bent to a parabola works well at

exactly 1:2 magnification. However, even at small deviations

from the 1:2 condition, as in the present ALS beamline 12.2.2

case, the approximation of the diaboloid by a cone has to

be used to eliminate the asymmetric aberration tail in the

tangential direction. For other magnifications the exact

diaboloid should be used.

6. Summary

The diaboloid is a hybrid optical surface that focuses light

from infinity to a point in one direction, and in the orthogonal

direction focuses from a real source to a stigmatic point. To

date, toroidal mirrors have served this purpose on X-ray

beamlines, but, as source sizes decrease, the residual aberra-

tions become significant. With the advent of diffraction-

limited storage rings with very bright bending-magnet sources,

there is a need for better focusing.

The diaboloid provides aberration-free focusing and will be

useful in all cases where there is a vertically collimating pre-

mirror, as is common in beamlines using a bending-magnet (or

a short wiggler) source and a double-crystal monochromator.

The optimal shape departs from more commonly used optical

surfaces, but, at 1:2 horizontal magnification, the shape comes

closest to a toroid, bringing it within reach of current manu-

facturing.
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Figure 8
Surface shapes for beamline 12.2.2 with a toroid detrended and selected sagittal profiles: (a) diaboloid, (b) cone [equation (3)] and (c) elliptical cylinder
bent to a parabola. The detrended toroid major radius is Rt = 8.075 km and the minor radius is Rs = 22.595 mm.

Figure 9
Calculated focal spots produced by ALS beamline 12.2.2 with the
diaboloid approximated by four surfaces: (a) a cone (sagittal linearly
varying circular section) bent to a parabola in the tangential direction,
(b) a cylinder (sagittal uniform circular section) bent to a parabola in the
tangential direction, (c) a cylinder (sagittal uniform elliptical section)
bent to a parabola in the tangential direction, and (d) like (b) but in the
exact 1:2 configuration (M = q:p = 9.4:18.8). For comparison, the exact
diaboloid gives a spot size of 10 mm � 18 mm [Fig. 4(b2)].



For 5 mrad grazing angles, and typical beamline parameters,

the deviation of the surface from toroidal is below 2 mm, a

thickness at which sputtering can be used to deposit a thin,

spatially graded, correcting layer. Additionally, at the 1:2

magnification condition, the parabolic tangential shape could

be created by bending, and the unbent mirror would have

elliptical or circular sagittal cross-sections. This opens up

possibilities for normal-incidence optical interferometry.

As fabrication and metrology improve, diaboloids can be

used to produce aberration-free focusing under any magnifi-

cation, exceeding the performance of toroids and offering the

possibility of simplifying the beamlines by eliminating the

need for additional demagnifying elements. The Oasys work-

space containing the optical systems discussed in this work

and other support files are available at the address: https://

github.com/oasys-als-kit/Paper_JSR_hf5419.

APPENDIX A
The explicit form of the diaboloid

Using the schematic view in Fig. 1, in the plane of incidence,

the distance from the source (0, �p, 0) to the image

ð0; q cos 2�; q sin 2�Þ, passing through the mirror pole (0, 0, 0),

is p + q. In this orientation, the incident light cone is centered

on the y-axis. By Fermat’s principle, this distance must be the

same when passing through any point (x, y, z) of the mirror

surface to a corresponding point on the line-image,

pþ q ¼
�
x2 þ ðyþ pÞ2

�1=2
ð4Þ

þ
�
x2
þ ðq cos 2� � yÞ

2
þ ðq sin 2� � zÞ

2
�1=2
:

This equation can be solved exactly, obtaining equation (1),

that determines the mirror height z for every point (x, y) on

the surface.

In the yz plane, with x = 0, the tangential section is a

parabola. The equation of the parabola with axis of symmetry

parallel to the y axis (Fig. 1) can be written

y ¼ �
z2

4f
þ

vzz

2f
�

v2
z

4f
þ vy

� �
; ð5Þ

with focal distance f and vertex (vy, vz). Developing equation

(4) for x = 0 and matching coefficients we find f =

ð1� cos 2�Þ q=2, vz = q sin 2� and vy = f þ q cos 2�.
The sagittal section is approximately an ellipse. For y = 0 in

equation (1) we have

ðz� q sin 2�Þ2 ¼ � 2ðpþ qÞ p2
þ x2

� 	1=2
þ 2p2

þ 2pq

þ q2 sin2 2�: ð6Þ

Expanding the square root for x� p, we obtain the ellipse

equation,

x2

a2
x

þ
ðz� q sin 2�Þ2

a2
z

¼ 1; ð7Þ

with semi-axes az = q sin 2� and ax = az[q/(p + q)]1/2.
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