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ABSTRACT 

Convenience and cost often lead to synchrotron beamlines where the final bendable Kirkpatrick-Baez focusing pair must 
relay the final image to different samples at different image distances e.g., [Proc. FEL2009, 246-249 (2009)] either for 
different experimental chambers, or diagnostics. We present an initial analytical approach, starting from, and extending 
the work of Howells et al. [OE 39(10), 2748-62 (2000)] to analyze the trade-offs between choice of mirror, bending 
couples and the given, shaped sagittal width of the optic. Both experimentally and in simulation, we have found that 
after an appropriate re-bending, sagittally shaped optics can perform with high quality at significantly different incidence 
angles and conjugate distances. We present one successful demonstration from the ALS Optical Metrology Beamline 
5.3.1, and review some new closed form analytical solutions with a view towards understanding our results. 
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1. INTRODUCTION 

Due to the advantages of using optical substrates that are in hand from previous projects the staff of the current 
“Laboratory Directed Research and Development” (LDRD) project “X-Ray Optical Metrology for Coherence-Preserving 
Adaptive Optics” became interested in the use of one of these older substrates in order to save time and cost for the 
second, horizontal Kirkpatrick-Baez mirror in beamline 5.3.1 at the Advanced Light Source (ALS).1-7 

We have investigated the collection of KB mirror substrates that have accumulated at the ALS optical metrology 
laboratory (OML) over the years, both those having sagittally straight sides and sagittally shaped sides. In a broader 
context, this work checks and analyzes whether previously calculated and purchased sagittally shaped substrates can be 
bent for different geometries of use. This could potentially involve changes in one or both of the conjugate distances, 
and/or the grazing incidence angle. These potential new geometries of use must be optimized and checked to see whether 
the required bending matches the required surface figure of the new geometry to a sufficient level for the application. 
The correspondence of the couples to the elastic bending of the substrate must also be checked. 

2. ANALYTICAL BEGINNINGS 

We begin our consideration by implementation in MathematicaTM of the formalism from Ref.3 This will be our starting 
point before extending the analysis. Fig. 1 shows the optical geometry. Notation follows Ref. 3. Equation ( 1) shows the 
standard equation for a non-rotated ellipse centered on the origin. a and b are the semi-major and semi-minor axes, 
respectively. 
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Figure 1:  The geometry of our application of the optic 
bent into an off-axis ellipse. C1 is the downstream 
bending moment applied to the mirror. C2 is the 
upstream bending moment. 
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The sag of the ellipse in the local coordinate system (x, y) is expanded in a MacLaurin series about the pole of the mirror,  

 2 3 4
2 3 4y a x a x a x .....= + + +      . (2) 

 

The slope and curvature are obtained by differentiation; 

 
2

2 3 2
2 3 4 2 3 42

dy d y2a x 3a x 4a x ..... and 2a 6a x 12a x .....
dx dx

= + + + = + + +  ( 3) 

 

The ai coefficients from Ref. 3 are reproduced in Table A1, in the Appendices. We have re-derived these values.8 The 
bending of the mirror is described by the Bernoulli-Euler equation,9 where E is the elastic modulus, I(x) is the moment 
of inertia as a function of the tangential distance along the mirror, and C1, and C2 are the bending couples, see Fig. 1  
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d y C1 C2 C1 C2E I(x) x
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+ −

= + . ( 4) 

 

I(x) is constant for a uniform cross section, and is a function of x if the substrate is sagittally shaped. We express this as 
a function of the sagittal width, and, of course the thickness;  

 ( ) ( ) 3b x h
I x

12
= , ( 5) 

 

and solve for b(x), the sagittal width. h is the thickness, assumed uniform. b0 is the thickness in the middle of the mirror, 
held to provide the same radius of curvature as the center of the ideal elliptical mirror,3 
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We will first analyze and optimize the bending of the old substrate using the power series approach. However, our 
primary goal is to present our analytical solutions for the height, slope and curvature of a grazing incidence off axis 
ellipse expressed solely in terms of the parameters of use, and use them to find new closed form solutions for optimal 
sagittal shape under different assumptions. We have found analytical solutions for this width function, equation ( 6), see 
Section 5. 

3. TEST CASE FOR SUBSTRATE RE-USE 

For the horizontal mirror for the LDRD project we picked a suitable older substrate that had been originally purchased 
for mirror M3 for BL 10.3.2.10 It is fabricated from single crystal silicon, 102 mm long, 13 mm in sagittal width in the 
middle, and 4 mm thick. See Table 1, for its parameters of use, and for the parameters of the new intended use at BL 
5.3.1. For the new use, r comes in from infinity, r’ is a little shorter, and the grazing incidence angle is doubled. We now 
wish to bend the substrate to an ellipse, rather than a parabola. 

 

Table 1:  Geometry of use for the mirror substrate: new, and old. 

 source to mirror distance mirror to image distance incidence angle from 
normal 

Old use:  M3, BL 10.3.2 r  = ∞  r’ = 260 mm θ = π/2 – 0.004 

New Use: Horizontal Mirror, BL 5.3.1 r = 1525.76 mm r’ = 243.63 mm θ = π/2 – 0.008 
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Fig. 2a shows the optimal radius of curvature needed for the before and after uses. Fig. 2b shows the optimal sagittal 
width of the substrate in question from the old use, and sagittal width given by the old formalism for the new usage. 
Note that they are quite different. 

 
Figure 2:  (a) radii of curvature for the before and after uses. (b) optimal sagittal width according to Eq. ( 6) for each use. 
Downstream is on the left in each graph, see notation in Fig. 1. Of course, since we are using an old substrate, and not 
buying a new one, we only have access to a mirror with the sagittal shape on the right plotted by the solid line. 

 

The solution of the bending equation given in Ref. [3] including Eq. ( 6) assumes that the couples C1 and C2 are those 
computed by maintaining the condition that the width of the mirror in the center is held constant. Stated another way, the 
this means that the radius of curvature in the center of the mirror be the same as that of the exact ellipse, in each different 
case. This constant width at x = 0 is shown by the crossing at the center point of the two curves in Fig. 2b. For the 
existing sagittal width (solid line in the figure) the left hand side (downstream) value of 12.126 mm is larger than the 
12.000 mm right hand side (upstream) value. This is a result of optimization with the used boundary conditions. The 
couples under this assumption are (0.0897 Nm, 0.0489 Nm) for the original case, and (0.2169 Nm, 0.1263 Nm) for the 
new case. Bending couples that are this different make bending and tuning more difficult. The bender, finding a new 
equilibrium position in translation as it is tightened, can move along the beamline. To address this problem the two leaf 
springs are often made of different thicknesses, causing yet another set of differences, and hence problems, in the 
mechanism. 

It is straightforward in MathematicaTM to numerically integrate the second order differential Eq. ( 4) to obtain the height 
and slope predicted by the bending. We should have some indication of the accuracy of the calculation, however, before 
making conclusions at nanometer, and sub-microradian levels. Figure 3 shows the height and slope obtained from the 
integration for the old case, solid lines; and the new case, dotted lines. The width function was interpolated by cubic 
spline between points 1 mm apart for the integration. Two necessary and sufficient boundary conditions are supplied by 
setting the height and slope to zero at the center of the optic. We find that the height differs less than 10-8 mm from the 
exact elliptical cylinder, and the slope differs by less than 10-9 radian for both cases, showing the accuracy of our 
numerical implementation of Eq. ( 4) in Mathematica.TM Our considerations do not include gravity, chamfers, edge 
rounding, and anticlastic bending; some or all of which might have to be considered when designing a larger or 
differently shaped mirror. 

4. PERFORMANCE AT THE NEW USE PARAMETERS 

We now look at the difference in the new case between the shape achieved by bending and the exact elliptical cylinder. 
We find in Fig. 4, when re-integrating the differential Eq.( 4) for the new case, the somewhat surprising result that the 
mirror performs quite well in the new geometry, even at twice the bending (solid lines) of the original design. The rms 
deviation in slope is 0.49 μrad for the entire length, and just 0.23 μrad over the central 80 mm clear aperture. Thus, the 
substrate can perform near the diffraction limit for our new application, even without relaxing the criterion of matching 
the radius of the new ellipse in the middle. 
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Figure 3:  Height and slope predictions from numerical integration of the Bernoulli-Euler differential equation: (a)  height 
or sag of the mirror; (b) slope of the mirror. Downstream is on the left. Solid lines are the substrate in the original use, 
dashed lines are the substrate bent to the new use, maintaining the condition that the radius of the ellipse at the pole of the 
mirror be the same as that of the exact elliptical cylinder for that case. 

 
Figure 4:  Height and slope differences from exact elliptical figure. (a) height difference in microns. (b)  slope difference in 
microradians. Downstream is on the left. Solid lines, maintaining center radius; dashed lines, after regression adjustment of 
couples, allowing a different center radius. 

 

We are clearly not at optimal adjustment, however. The height difference in Fig. 4a (solid line) does not show the 
characteristic “bird” to be expected from optimal balancing of second and fourth order aberrations,11 and the slope in Fig. 
4b (solid line) shows a net tilt. We now execute an optimization in exact analogy to the adjustment procedures done on 
mirrors sent for adjustment in the OML.12,13 We tune the couples one at a time a known small amount. In this case we 
stepped C1 and then C2 by 1% of the sum of the two original couples. This gives us the effect of a small adjustment in 
each couple. Given enough independence between the effects on the mirror of each couple, we can then solve for optimal 
changes in C1 and C2 which serve to optimize the difference between the as bent surface and the ideal tangential 
elliptical figure. 

Recalling the development from Refs [11,12], we re-write equation ( 4), putting all effects except the effects of the 
couples into two new functions; 

 
2

1 1 2 22

d y C g (x) C g (x)
dx

= + , ( 7) 

where we have defined: 
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1
1 1 1g (x) x
2 L EI(x)

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 and 2
1 1 1g (x) x
2 L EI(x)

⎛ ⎞= +⎜ ⎟
⎝ ⎠

. ( 8) 

Integrating (7) provides the slope, 

0 1 1 2 2
dy(x,C) C C f (x) C f (x)
dx

α ≡ = + + , ( 9) 

where 

 1 1 2 2f (x) g (x)dx and f (x) g (x)dx= =∫ ∫ . ( 10) 

C0 is a constant of integration that is the overall tilt of the mirror. We have expressed the slope trace of a bendable mirror 
as a linear combination of two functions, f1(x) and f2(x), specific to the mirror design. We now consider f1 and f2 to be 
unknown functions which we will determined by approximation later, and identify the components of the vector C to be 
the adjustments of the bendable mirror in whatever units are convenient. The errors in the surface slope with respect to 
the ideal elliptical surface are linear in these not yet determined functions. If these functions were known, one would 
directly optimize the mirror shape to the desired one by varying the constants C1 and C2. Consider an ideal elliptical 
surface in the same notation: 

 0 0 0 0
0 1 1 2 2(x,C) C C f (x) C f (x)α = + + . ( 11) 

Deviations from the ideal surface slope may be expressed: 

 0 1 1 2 2(x,C) C C f (x) C f (x)Δα = Δ + Δ + Δ . ( 12) 

We now proceed to approximate the values of the ( )i if x . If we calculate the slope of the optic for any given set of 
adjustments of the iC : 

 20 i 0 1 1 i 2 2 i(x ) C C f (x ) C f (x )δα = Δ + Δ +Δ , ( 13) 

and then adjust one of the couples, say the left bending moment, represented by 1C  and calculate the mirror again at the 
new setting : 

 21 i 0 1 1 1 i 2 2 i(x ) C ( C C )f (x ) C f (x )δα = Δ + Δ + δ +Δ , ( 14) 

we may subtract ( 13) from ( 14) resulting in: 

 21 i 20 i 1 1 i(x ) (x ) C f (x )δα − δα = δ  ( 15) 

We may solve for an approximation to 1f , 

 * 21 i 20 i
1 i

1

(x ) (x )
f (x )

C
δα − δα

=
δ

. ( 16) 

With the asterisk we separate the estimate from the true value of the function. Analogously, we may repeat the process 
by differencing two calculations of the slope of the optic with different values of the other couple. 

 * 22 i 20 i
2 i

2

(x ) (x )
f (x )

C
δα − δα

=
δ

 ( 17) 

Now using the ( )*
i if x , linear regression analysis can be applied to find the best fit adjustment parameters.14-18 First the 

regression matrix may be formulated:  
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* *
1 1 2 1
* *

1 2 2 2

* *
1 m 2 m

1 f (x ) f (x )
1 f (x ) f (x )

Â

1 f (x ) f (x )

⎡ ⎤
⎢ ⎥
⎢ ⎥≈ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M M M
 . ( 18) 

This provides a solution:16  

 * 1
20

ˆ ˆ ˆ ˆC (A A) A−′ ′Δ = δα , ( 19) 

with an estimation for the dispersion of the found parameters:  

 * 2 1ˆ ˆ ˆ D( C ) (A A)−′Δ = σ , ( 20) 

where the dispersion parameter σ2 can be estimated from: 
* * * * 2

20 1 1 i 2 2 i2 i
[ C f (x ) C f (x )]

m p
δα − Δ −Δ

σ ≈
−

∑ . ( 21) 

Where p is the number of parameters plus 1. (In our mirror bending applications p = 4.) 

 

In this new calculational, rather than experimental, application we implement the 3 sets of couples by three integrations 
of Eq. ( 4) rather than in three adjustments of an actual mirror. Assuming linearity of the problem, we predict by the 
method summarized in Eqs. [( 7)-( 21)] a new (C1,C2) pair using characteristic functions computed by differences in the 
3 results divided by the step amounts in the couples.13 Fig. 5 shows the three slope trace differences of our method from 
the exact elliptical shape. It is exactly analogous to computing a change table in geometrical optics, and predicting a best 
solution from the 

 
 

 
Figure 5  Slope differences between the three 
different mirror shapes used to predict optimal 
adjustment by regression analysis, and the exact 
elliptical shape. Solid line repeats the slope 
differences from the right hand side of Fig. 4. 
Dotted and dashed traces are the slope differences 
when C1 and then C2 are stepped a small amount 
according to the method. 

 

shifts in a merit function that occur as a result of the changes.19 The new couples change only slightly to achieve this 
adjustment. Even though the change is small, the effect on the result is significant. The newly predicted performance is 
shown by the dashed lines in Fig. 4. Notice the much better “bird” shown in Fig. 4a (dashed line), and the now near zero 
tilt of the slope in Fig. 4b. While “bird” is not an end in itself--lower rms error is--it does indicate that we have exhausted 
all the possible adjustments available with two couples, and balanced 2nd and 4th order aberrations.11 It also indicates that 
3rd order aberration (coma) has been adjusted out. The new couples give rms slopes of 0.19 μrad rms full length, and 0.17 
μrad rms over an 80 mm clear aperture (dashed lines in Figs. 4a and 4b). When bendable optics are adjusted in the OML 
this balance of second and fourth order aberrations is now routine as a sign that the maximum reduction of the rms 
deviation from exact tangentially elliptical figure is close. 
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We have shown that an old substrate from BL 10.3.2 can be used for the LDRD project on BL 5.3.1 despite the different 
parameters of use for which it was sagittally shaped in manufacture. The vertically deflecting KB mirror with the 
considered substrate has been assembled and successfully adjusted at the OML to the new calculated parameters. We 
next turn to why this can be so by looking at the finer details of sagittal shaping. 

5. ANALYTICAL RESULTS 

It is the conditions under which these results were derived that we wish to modify slightly. Ref. [3] fixes the curvature in 
the center of the mirror to that given by the focusing term (Coddington’s tangential equation). The authors then match 
the first two or three terms in the equation for the curvature [times E I(x)] with the right hand side of Eq. (5), and solve 
for the two couples C1, and C2. Keeping these couples, they then solve for the sagittal width with a very precise 10th 
order polynomial expansion of the exact tangentially elliptical shape, see Appendix A. 

We now restart the derivation, still within the power series formalism; and, as does Ref [3], we vary the number of terms 
used to find the couples C1, and C2. In Mathematica,TM we break out the three terms of defocus, coma, and spherical 
aberration: 

 2
02 03 04defocus  2 E I (x) a  coma  6 E I (x) a x sphaber  12 E I (x) a x     = = = . ( 22) 

 

b appears implicitly in Eq. ( 22) implicitly through Eq. ( 5). Next we solve Eq. ( 4) for the sagittal width: (shown in 
MathematicaTM syntax); 

 ( ) ( ){ }Solve defocus coma sphaber C1 C2 / 2 C1 C2 * x / L ,{b}  .    ⎡ ⎤+ + == + + −⎣ ⎦    ( 23) 
 
Our analytical result is, where we have added 234 as subscripts to b, the width, to indicate the orders of the 3 aberrations: 
 

 ( ) ( ) [ ]

( ) [ ] [ ] [ ]
[ ] [ ]

3 '3

234 2 '2 ' 2 2 ' '2 2 2 2
3 '

' 2 2 '2 2 2

96 r r C1 L C2 L 2C1 x 2 C2 x Sec
b x  

8 r r 12 r r x 12 r r x Sin 12 r r x Sin 15 r x Sin
E h L r r

30 r r x Sin 15 r x Sin

+ + − θ
=

⎛ ⎞+ − θ + θ + θ
+ ⎜ ⎟⎜ ⎟− θ + θ⎝ ⎠

. ( 24) 

 

We now modify this result by leaving out the spherical aberration term in order to show that a straight-sided substrate 
can eliminate both defocus and coma for a selected pair of C1, and C2; (This result is seen to be trivial by comparing 
terms of similar order in x on both sides of the equation.) 

 ( ) ( ){ }Solve defocus+coma== C1+C2 /2+ C1-C2  x/L ,{b} .⎡ ⎤⎣ ⎦  ( 25) 

 
This gives the following result for b23(x), where the subscripts, again, indicate the terms included in the derivation, 

 ( ) ( ) [ ]
( ) [ ] [ ]( )

2 '2

23 3 ' ' '

24 r r C1 L C2 L C1 x 2 C2 x Sec
b x

E h L r r 2 r r 3 r x Sin 3 r x Sin
+ + − θ

=
+ − θ + θ

 ( 26) 

 

To find our next desired result, Eq. ( 28) , we have differentiated Eq. ( 26) with respect to x, and set the result equal to 
zero finding the (C1,C2) pair ratio which allows for a constant sagittal width, Eq. ( 27). 

 
[ ] [ ]( )
[ ] [ ]( )

' '

23 23 ' '

4r r 3 L r Sin 3 L r Sin
C2 C1

4 r r 3 L r Sin 3 L r Sin

− − θ + θ
= −

− θ + θ
 ( 27) 

Substituting ( 27) back into ( 26) we find; 
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 [ ]
( ) ( ) [ ]( )

2 '2

23 3 ' ' '

96 C1 r r Sec
b const.

E h r r 4 r r 3 L r r Sin

θ
= =

+ + − + θ
 ( 28) 

 
Note that there is no dependence on x in Eq. ( 28). We now have the satisfying result that explains why significant 
performance may be sometimes achieved with a less than optimal shape—the two biggest aberrations, defocus and 
coma,  may be corrected with a sagittally un-shaped substrate. 

To recap, we have shown explicitly that to third order, accounting defocus and coma, a straight sided bender can give 
optimal performance if the sagittal width is chosen by expression ( 26), and the C2/C1 ratio is chosen by expression ( 27) 
Moreover, we have shown that to fourth order there is a closed form solution to the sagittal width. 

Indeed, the similarity of the numerators between expression ( 24), and expression ( 26) suggests that the 3 aberration 
case might be approached in a similar manner: 

 
( )( ) ( ) [ ] ( ) ( ) [ ]( )( )

( )( ) ( ) [ ] ( ) ( ) [ ]( )( )
' ' ' ' '

234

234 ' ' ' ' '

C1 4 r r 2 r r 3 x L x 3 r r Sin 2 L r r 5 r r x L x Sin
C2

4 r r 2 r r 3 x L x 3 r r Sin 2 Lr r 5 r r x L x Sin

− + + − + θ − + − + θ
=

+ − + − + θ + − + − θ
.    ( 29) 

 
Unfortunately, the x dependence remains, and we find no neat solution for a substrate of constant sagittal width to fourth 
order. However, we did achieve balancing between second and fourth orders in our results in sections 3, and 4 with a 
wrongly shaped substrate. Even for a straight sided bender, balancing these orders will provide performance exceeding 
that given by our analytical results in this section.11 

6. EXACT EXPRESSION FOR THE ELLIPTICAL FIGURE 

We now break completely with the series expansion formalism. If we return to Eq. ( 4), and replace the three pieces of 
the curvature linked to the three aberrations with the analytical closed form of the curvature for an exact off-axis ellipse, 
we can solve analytically for a closed form solution for the sagittal width. 

We use for the total curvature of a grazing incidence off-axis ellipse: (see Appendix B) 

 
( ) [ ]( )

( ) [ ] ( ) [ ]( )( )

42 ' 2 ' 2

tot 3
2 2' ' 2 ' 2 '

r r r r 1 Cos 2
curv

8 r r r r Cos r r x r r x Sin

+ + θ
=

− + θ − + + − θ

. ( 30) 

 

This closed form expression for the curvature, (30), may be checked against Ref. [3] by taking a MacLaurin expansion to 
second order; 

  

( ) [ ]

[ ]

( ) [ ] ( ) [ ]( )2' 2 ' ' 2 ' 2'

tot ' 3 ' 3

2 ' 2

3 r r Cos 5r 2r r 5r 5 r r Cos 2 xr r Cos 3curv .....
1 12 r r 32r r8 Sin 2 x

r r

+ θ − + − − θ+ θ
= + + +

−⎛ ⎞+ θ⎜ ⎟
⎝ ⎠

 . ( 31) 

 

Comparison shows that after multiplying each term by E b(x) h3/12 that the terms match those of Ref. [3], confirming 
our result from Appendix B. 

Putting expression ( 30) into ( 4), or practically into ( 23), and solving, we have; 

 

Proc. of SPIE Vol. 8141  81410K-8



 

 

 
( ) [ ] ( ) [ ]( )( )

( ) [ ]( )

3
2 2' ' 2 ' 2 '

tot ,ellipsoid 43 2 '2 ' 2

C1 C2 C1 C296 r r r r Cos r r x r r x Sin
2 Lb (x)

E h r r r r 1 Cos 2

+ −⎛ ⎞+ − + θ − + + − θ⎜ ⎟
⎝ ⎠=

+ + θ
. ( 32) 

 

This provides our nearly penultimate result:  the sagittal width function for an off-axis elliptically cylindrically bent optic 
as a function of the parameters of the geometry of use, and the two bending couples. Finally, we take the limiting case of 
a cylindrically paraboloidal bent optic, and insert (B9) into ( 4), finding; 

 
2

tot ,paraboloid 2

3 (C1 C2 2 C1 2 C2 )(rL L

L

' Sin[ ])b
16 E r' Cos[ ] (r' Sin[ ])

+ + − − θ
=

θ − θ

x x x
x

 ( 33) 

7. CONCLUSIONS 

We have found that previously purchased substrates for tangentially elliptical bendable optics should be checked to see if 
they can be used in other geometries. Specifically, we showed that a substrate originally shaped to become a parabola for 
beamline 10.3.2 can readily be adapted to an elliptical shape for nano-focusing and wavefront optimization research on 
ALS beamline 5.3.1. In order to explain this we have clarified previous work by expressing the optimal form of sagittal 
shaping for bendable mirrors in closed form solutions for the two cases of defocus plus coma, and defocus plus coma 
plus spherical aberration using the previous polynomial expression for the elliptical shape. The benefits of this theory--
allowing the slope at the mirror center to find an optimal value not fixed to a prescribed slope--are that the mathematical 
formulation now matches alignment shapes attained when bending mirrors experimentally. 

Continuing, we inserted an exact expression for the curvature of an off-axis ellipse, and found a useful closed form 
expression for the optimal sagittal width for the completely exactly formulated case, both for the ellipsoidal and 
paraboloidal cases. Taken together, these results illustrate more completely what is actually done when optimizing the 
adjustment of a bendable optic in the laboratory, or beamline. 

APPENDIX A 
Table A1:  MacLaurin expansion coefficients of a tangential elliptical cylinder, after Ref.8  u and v are defined for 
convenience. r, r’ and θ are positive definite, θ being measured from the normal. Since de-magnifications can now exceed 
100 to 1 this many terms are necessary when using the series approximation to the tangential elliptical figure. These 
expressions have been confirmed as part of this work. 

 

1 1u Sin[ ]
r r '

⎛ ⎞≡ θ −⎜ ⎟
⎝ ⎠

 
1v

r r '
≡  

0a 0=  (origin is at the pole of the optic) 1a 0=   (slope is zero at the pole of the 
optic) 

2
cos[ ] 1 1a

4 r r '
θ ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 2
3

a ua
2

=  

2

4 2
5u va a
16 4

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

2

5 3
7u 3 va a
16 4

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

4 2 2

6 2
21u 7u v va a
128 16 8

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 

4 2 2

7 3
33u 15u v 5va a
128 16 8

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 

6 4 2 2 2

8 2
429u 495u v 135u v 5va a
4096 1024 256 64

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
     

6 4

9 3 2 2 2

715u 1001u v
4096 1024a a

385u v 35v
256 64

⎛ ⎞
+ +⎜ ⎟

⎜ ⎟=
⎜ ⎟

+⎜ ⎟
⎝ ⎠

 

8 6 4 2 2 2 4

10 2
2431u 1001u v 1001u v 77u v 35va a
32768 2048 1024 128 128

⎛ ⎞
= + + + +⎜ ⎟

⎝ ⎠
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APPENDIX B 

 
Our goal is to provide, in closed form, the equation of the surface, its derivative the slope, and its second derivative 
which is equal to the curvature in our approximation with only r, r’, and θ as independent variables. 
 
We begin with Eq. (1) and a slightly different accompanying diagram, Fig. B1, where we have moved the ellipse to 
satisfy the extreme off-axis nature of grazing incidence; 
 

δ

r 

r’ 

δ 

θ 

Figure B1:    Translated and rotated ellipse 

y 

x

 

 
 
 
 

                          
2 2

2 2

x y 1
a b

+ = . (A1) 

We require our equations change to have their origin of coordinates at the center of the optic with the normal to the 
surface at this point the y-axis. To achieve this, we must translate the ellipse and rotate it. We rotate the ellipse first.  
 

 
[ ] [ ]( ) [ ] [ ]( )2 2

2 2

xCos ySin xSin yCos
1

a b
δ + δ δ − δ

+ =   . (A2) 

 
Equation (A2) obtains because we are rotating by -δ. That is, since counter clockwise is by convention defined as 
positive, our clockwise rotation requires a negative angle in the standard notation. The rotation matrix equation for 
points with -δ inserted is; 
 

 
[ ] [ ]
[ ] [ ]

rot

rot

x Cos Sin x
Sin Cosy y

⎛ ⎞−δ − −δ⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟−δ −δ ⎝ ⎠⎝ ⎠ ⎝ ⎠

  . (A3) 

Note that this is the transpose of the standard matrix which rotates coordinate systems. Multiplying out, we obtain; 
 
 [ ] [ ] [ ] [ ]rot rotx xCos ySin y xSin yCos= δ + δ = − δ + δ  , (A4) 
 
which is what we have used for (A2). Note that δ is now positive definite because we have explicitly accounted the 
signs. Because of the squares in (A2), yrot can be reversed in sign for better symmetry without affecting further results. If 
we multiply out (A2), and collect terms according to the most general equation for an ellipse:20 
 
 ( ) ( ) ( ) ( ) ( )( )2 2

c c c c c cA x x B y y C x x D y y E x x y y F 0− + − + − + − + − − + = , (A5) 
  

we find these results. Note that (A5) includes a translation of the center of the ellipse to the coordinates (xc,yc). 
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[ ] [ ]
[ ] [ ]

[ ] [ ]( ) ( )( ) [ ]
[ ] [ ]( ) ( )( ) [ ]

( ) [ ]
( ) [ ] ( ) [ ] ( ) [ ]

2 2 2 2

2 2 2 2

2 2 2 2
c c

2 2 2 2
c c

2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2
c c c c c c

A b Cos a Sin ,

B a Cos b Sin ,

C 2x b Cos a Sin a b a b y Sin 2 ,

D 2y a Cos b Sin a b a b x Sin 2 ,

E a b Sin 2 ,

F a b b x a y Cos a x b y Sin a b x y Sin 2 .

= δ + δ

= δ + δ

= − δ + δ + − + δ

= − δ + δ + − + δ

= − + δ

= − + + δ + + δ + − + δ

 (A6) 

Since we have two boundary conditions in the final translated coordinate system:  from y = y' = 0 at x = 0, we can show 
that C = F = 0 must hold for our final results, see (A7) and (A8). Note that we are not using (xc,yc) for these conditions 
because we have translated to the new coordinates, and (xc,yc) are now the coordinates of the center of the ellipse. 

 2 2

y 0 at x 0
A x B y C x D y E x y F 0,
0 0 0 0 0 F 0 F 0 .

= = ⇒

+ + + + + =
+ + + + + = ⇒ =

 (A7) 

 ( )2 2

y y ' 0 at x 0
d A x B y C x D y E x y F 0,

dx
2 A x 2 B y y C D y E y E x y 0 0,
0 0 C 0 0 0 0 0 C 0.

= = = ⇒

+ + + + + =

′ ′ ′+ + + + + + =
+ + + + + + = ⇒ =

 (A8) 

APPENDIX C 

To completely remove all of our parameters from those of the non-translated, non-rotated ellipse we now find a, b, δ, xc, 
and yc directly from the optical parameters r, r’, and θ, where θ is the angle of incidence at the center of the mirror 
measured from the normal. θ is the angle of incidence measured from the normal, and is positive definite. 

2a r r '= + is straightforward, finding the semi-major axis, a, using only optical parameters. Drawing the special case 
when the pole of the mirror is at the top center of the ellipse drawn in Fig. C1, we have, then; 

 

Figure C1:  Geometry of the ellipse for finding b 

a b 

c 

( ) ( )

( ) ( ) ( ) ( ) ( )

22
22 2 2 2 2 2 2

2 2 2 2 2

r rr rb a c c c 4b r r 4c
2 4

12b r r 2c b r r 2c .
2

′+′+⎛ ⎞ ′= − = − = − = + −⎜ ⎟
⎝ ⎠

′ ′= + − = + −

(B1) 

( )22c  may now be found with the cosine rule, giving the semi-minor axis in terms of the optical parameters; 

 ( )2 2 22c r r ' 2 r r 'Cos[2 ].= + − θ  (B2) 
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( ) ( ) ( ) ( )

( )

2 2 2 2 2

2 2 2 2

1 1b r r 2 c r r r r ' 2 r r 'Cos[2 ]
2 2

1 1r r ' 2 r r ' r r ' 2 r r 'Cos[2 ] 2 r r ' 2 r r 'Cos[2 ]
2 2

1b 2 r r ' 1 Cos[2 ]
2

′ ′= + − = + − + − θ

+ + − − + θ = + θ

= + θ

 (B3) 

In order to obtain and cx  and cy directly from the optical parameters we examine the center of the ellipse in Fig. B1; 

 [ ] ( ) ( )
c c

r Sin[ ] r ' Sin[ ] r Cos[ ] r 'Cos[ ]
x , y ,

2 2
− θ + θ θ + θ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (B4) 

δ is found by computing the slope of the line through the two foci in Fig. B1, using the two focal points, and taking the 
inverse tangent of the slope, m,  to get the angle; 
 

 

( )
( )

( )
( )

1 1

1 1

r Cos[ ] r Cos[ ]Tan [m] Tan
r Sin[ ] r Sin[ ]

r r r rCos[ ]Tan Tan Cot[ ] .
r r Sin[ ] r r

− −

− −

′⎡ ⎤θ − θ
δ = = =⎢ ⎥′− θ − θ⎣ ⎦

′ ′⎡ ⎤ ⎡ ⎤− −θ
= − θ⎢ ⎥ ⎢ ⎥′ ′− − θ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (B5) 

 

We now have δ  as a trigonometric function of a ratio of functions of our three optical parameters. Returning to our 
results for the equation of the rotated and translated ellipse, Eqs. (A6), we can express the height, of the exact translated, 
rotated, tangentially elliptical surface: 

 
( ) [ ] [ ] ( ) [ ]( ) ( ) [ ]( )

( ) [ ]

2

22 2

height r r ' 4r r 'Cos 4Abs Cos r r ' r r ' x r r ' x Sin r r ' Sin 2

r 6r r ' r ' r r ' Cos 2

⎡ ⎤= − + − θ + θ − + − + θ + − θ⎣ ⎦

+ + − − θ
. (B6) 

A similar expression to (B6) is found in Ref.21 on crystal spectrometers which differs from this because it uses the 
grazing incidence angle, the complement of our angle from the normal, and it has another method of derivation. 
Numerically both Ref. [21] Eq. (15) and our Eq. (B6) give the same result. Slope and curvature are readily obtained by 
differentiation, although getting them into compact forms requires some manipulation in Mathematica.TM

  Rommeveaux 
et al.22 give results for the height and slope of the off-axis ellipse, and Zhang et al.23 solve the same Bernoulli-Euler 
equation, but do not explicitly present the formulas for the off-axis ellipse. To our knowledge, this is the first complete 
collection of the expressions, using only the conjugate distances, and the normal incidence angle. 

 

( ) [ ] ( ) [ ]( )

[ ] [ ]( ) ( ) [ ]( ) ( ) [ ]

[ ]
[ ]

[ ]( ) ( ) [ ]

2

2 2 2 1

2 2

2 2 1

slope 2 r r ' r r ' Cos 2x r r ' Sin

r r ' Cot
Abs Cos r r ' 2r r 'Cos 2 r r ' r r ' x r r ' x Sin Sin 2 Tan

r r '

r 4r r ' r ' 2r r 'Cos 2

Abs Cos r r ' Cot
r r ' 2r r 'Cos 2 Cos 2 Tan

r r '

−

−

= + θ + − θ −

⎡ ⎤⎡ ⎤− θ
⎡ ⎤θ + − θ − + − + θ ⎢ ⎥⎢ ⎥⎣ ⎦ +⎢ ⎥⎣ ⎦⎣ ⎦

⎛ + + + θ +
⎜

⎡ ⎤θ ⎡ ⎤⎡ ⎤− θ⎣ ⎦ + − θ ⎢ ⎥⎢ ⎥+⎢ ⎥⎣ ⎦⎣ ⎦⎝

( ) [ ]( )2r r ' r r ' x r r ' x Sin

⎞
⎟

− + − + θ⎜ ⎟
⎜ ⎟⎜ ⎟

⎠

 (B7) 

 
( ) [ ]( )

( ) [ ] ( ) [ ]( )( )

42 2 2

3
2 2 2 2

r r ' r r ' 1 Cos 2
curvature

8 r r ' r r ' Cos r r ' x r r ' x Sin

+ + θ
=

− + θ − + + − θ

 (B8) 
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These three results may be straightforwardly applied to the case of a paraboloidal optic by taking the limit as r goes to 
infinity: 
 

 
2

2

r' Cos[ ] (r' Sin[ ])
paraboloid 's curvature

2(r' Sin[ ])
θ − θ

=
− θ

x
x

, (B9) 

the slope of the paraboloid; 

 r' Cos[ ]Cot[ ] ( 1 )
Abs [Cos[ ]] r' (r' Sin[ ])

θ
θ − +

θ − θx
, (B10) 

and the height, or sag of the paraboloid; 

 

 2Cot[ ] ( 2 r' Csc[ ]) 2 Abs[Cos[ ]] Csc[ ] r' (r' Sin[ ])− θ − θ − θ θ − θx x . (B11) 
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