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Fourier-transform method of phase-shift determination

Kenneth A. Goldberg and Jeffrey Bokor

A new phase-shifting interferometry analysis technique has been developed to overcome the errors
introduced by nonlinear, irregular, or unknown phase-step increments. In the presence of a spatial
carrier frequency, by observation of the phase of the first-order maximum in the Fourier domain, the
global phase-step positions can be measured, phase-shifting elements can be calibrated, and the accuracy
of phase-shifting analysis can be improved. Furthermore, reliance on the calibration accuracy of trans-
ducers used in phase-shifting interferometry can be reduced; and phase-retrieval errors ~e.g., fringe
print-through! introduced by uncalibrated fluctuations in the phase-shifting phase increments can be
alleviated. The method operates deterministically and does not rely on iterative global error minimi-
zation. Relative to other techniques, the number of recorded interferograms required for analysis can
be reduced. © 2001 Optical Society of America
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1. Introduction

The quest for high-accuracy wave-front-measuring
interferometry techniques has given rise to a wide
variety of data collection and analysis methods.
Ranking high among them, phase-shifting inter-
ferometry has achieved widespread use in a variety of
interferometric applications since its introduction
three decades ago.1–4 Recording interferometric
data in the temporal domain, while a controlled, rel-
ative global phase shift is introduced between inter-
fering beams, permits the phase at each point in the
measurement domain to be calculated to within a
multiple of 2p. When the discreet temporal phase
increments are known a priori, calculation is typi-
ally performed by the algebraic combination of sep-
rately measured intensities with different weights
n a way that allows the stationary intensity, the

odulated intensity, and the relative phase to be
olved separately for each point.
The time-domain phase-shifting techniques offer

everal advantages over spatial-domain methods of
nterferogram analysis: improved noise immunity,
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nsensitivity to spatial variations in the detector re-
ponse, high-spatial-frequency resolution, and ease of
mplementation. Ingenuity has produced a great
ariety of phase-retrieval algorithms to reduce sus-
eptibility to systematic and random error sources.

General techniques have been developed to accom-
odate regular, irregular, and arbitrary step incre-
ents. A primary source of systematic error facing

he early phase-retrieval methods came from the re-
uirement that the phase steps be uniform and well
haracterized. Error minimization for linear phase-
hift miscalibration has been addressed by several
uthors.5–12 A j 1 3 sample algorithm that elimi-
ates the effects of linear phase-shift miscalibration
nd harmonic components of the signal up to the jth
rder was developed by Larkin and Oreb.7 Schmidt
nd Creath13 proposed several algorithms for com-

pensating phase shifts with quadratic nonlinearity,
and de Groot developed a method to address cubic
nonlinearity.14 The susceptibility of phase-recovery
techniques to random phase-shift errors has also
been addressed,5,15 and methods to reduce measure-
ment errors have been proposed.16 Paradoxically,
error-compensating algorithms developed specifically
to reduce susceptibility to systematic errors are gen-
erally more susceptible to random noise.15–18 For
this reason, techniques have been proposed to mini-
mize the susceptibility to both systematic and ran-
dom noise simultaneously.16

It is evident from a survey of the literature that
much of the effort in the development of phase-
shifting techniques has been spent addressing errors
introduced by the phase-shifting itself. A different
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approach, which has led to a separate class of phase-
retrieval algorithms, measures the individual phase-
step values during the phase recovery and uses that
information to eliminate the measurement errors in-
troduced by phase-step miscalibrations, nonlineari-
ties, and random step errors. Methods have been
developed to determine simultaneously both the
global phase increment and the unknown relative
phase at each point. Authors Kinnstaetter et al.,19

and later Han and Kim,20 and Kim et al.21 have de-
veloped iterative techniques to reduce a global error
function that incorporates the global phase steps as
global-free parameters. Statistical approaches that
exploit the nonlinear response of the phase-retrieval
algorithms have been described by Dobroiu et al.22,23:
These procedures also rely on iteration. The com-
pound problem of translational and tilt–shift errors
during phase shifting has been addressed with an
iterative solution by Chen et al.24

The method described here falls into this latter
category but operates deterministically by examining
the Fourier domain without the necessity of iterative
error minimization. By measuring and using the
actual phase-step positions during the phase re-
trieval, we eliminate the need to suppress the tem-
poral harmonic artifacts that cause fringe print-
through, and the number of interferograms necessary
to achieve arbitrary accuracy can be reduced. Be-
cause the method measures the experimental phase
steps, it can also be used to study and calibrate the
behavior of phase-shifting elements. Because no it-
eration is required, the method can be designed to
operate rapidly.

In this paper we present a demonstration of this
method applied to data from an extreme ultraviolet
~EUV! phase-shifting point-diffraction interferome-
ter ~PSPDI!.

2. Addressing Phase-Step Uncertainty

When a finite number of interferograms are recorded,
with a global relative phase increment between each,
and all other experimental parameters are held con-
stant during the exposure series, then a convenient
general representation of the nth interference pat-
tern is

In~r! 5 A~r! 1 B~r!cos@f~r! 1 Dn#. (1)

The integer n can be regarded as the temporal-
omain index of the individual steps. Here r is a
patial coordinate spanning the measurement do-
ain, A~r! is the stationary intensity, B~r! is the

modulated intensity, $Dn% is the set of N global phase-
hift values, and f~r! is the relative phase we seek.
hen N $ 3 interferograms are recorded, and $Dn%

are known a priori, the system of N equations and
three unknowns is, in principle, analytically solvable
at each individual point in the domain. However, if
the N global phase values $Dn% are not known, then
the solution involves N equations and N 1 2 un-
knowns. ~If we allow f~r! to include an arbitrary
constant offset, D0 can always be defined as identi-
cally zero, reducing the number of unknowns by one,
without loss of generality.!

A. Methods of Accommodating Phase-Step
Miscalibrations

To accommodate first-order miscalibrations in the
global phase increment, $Dn% can be modeled with an
unknown linear step as Dn 5 an. With four un-
knowns at each domain point ~A, B, f, and a!, the
system is analytically solvable when four or more
interferograms are recorded. Unknown phase-
increment nonlinearities can be addressed in a sim-
ilar fashion with the insertion of additional
polynomial parameters in the expression for Dn, com-
bined with the recording of additional interfero-
grams: one additional interferogram is required for
each additional polynomial order in the expression
for Dn. By induction, the minimum number of re-
uired interferograms N will always equal three plus
he number of free parameters in the description of
n.
Difficulty in this form of analysis arises when the

global phase increments are irregular or unknown.
The representation of N arbitrary global phase incre-
ments requires a polynomial of order N 2 1 in n.
This number of free parameters precludes us from
finding an analytic solution for the N 1 2 unknowns
iven only N interferograms. When an independent
olution is sought for each separate domain point, the
atter statement is true. However, if we assume
hat all of the domain points experience the same
lobal phase increments, the information necessary
or a full solution is available if we modify our ap-
roach.

B. Different Approach: Measuring the Global
Phase-Shift Positions

A separate class of phase-shifting phase-recovery
methods treats each of the N phase steps as a free

arameter and seeks to minimize a global error func-
ion that includes the unknown phase-shift positions
nd the unknown phase at each point. Here an it-
rative approach is applied to the error function min-
mization.20,21 The free parameters now include the

N 2 1 phase increments plus the stationary and mod-
lated intensities and the phase at each point. If the

nitial guesses are close to the actual phase incre-
ents, then a satisfactory solution can be found
ithin a few iterations. However, for unknown
hase increments, the high degree of interdepen-
ence among the free parameters of the fit, the non-
inear dependence of the global error function on the
hase-step values, and the built-in degeneracy
aused by the excess of free parameters versus the
umber of interferograms can introduce computa-
ional difficulties. It may be difficult to assess
hether a given solution represents a local or a global
inimum of the error function; this issue is com-

ounded by the interdependence of the phase-step
arameters. In addition, such techniques may be
ighly sensitive to source intensity fluctuations
ithin the interferogram data series.
10 June 2001 y Vol. 40, No. 17 y APPLIED OPTICS 2887
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The phase-retrieval method described in this paper
is divided into two steps performed in sequence.
First, the N global phase positions are determined by

ourier-domain analysis; this is called the Fourier-
ransform phase-shift determination ~FTPSD!

method. The phase positions are then applied as a
priori information to the least-squares method ~LSM!
of phase retrieval.3,25,26 Application of this method
requires the presence of a spatial carrier frequency, or
wave-front tilt, in the measurement domain. This
matches the requirements necessary for the applica-
tion of the Fourier-transform methods of interfero-
gram analysis: Given the point-spread function of
the optical system under test, the spatial carrier fre-
quency must be high enough to adequately separate
the first-order signal from the zeroth-order compo-
nents in the Fourier domain.27 If this requirement is
not satisfied over the full domain of measurement ~be-
cause of high fringe curvature or insufficient tilt!, the
method can be applied on a subdomain over which the
conditions are met. Because the phase-shift positions
we seek are global, the FTPSD method does not suffer
significantly when performed on a subdomain. Such
a subdomain can be any appropriate subset of the in-
terferogram data, including a nonsquare or nonrect-
angular region, or a single line of data.

With the FTPSD method, no a priori information
about the phase steps and no initial-guess values are
required. As long as the phase-shift values do not
comprise a degenerate set ~i.e., the values are
unique!, the phase steps can be of any magnitude,
take any values, and be computed in any order. This
method finds the phase steps deterministically, not
iteratively; there are no concerns with achieving con-
vergence.

3. Solution of the Global Phase Positions with the
Fourier-Transform Phase-Shift Determination Method

Following the derivation of the widely known
Fourier-transform method of interferogram anal-
ysis,27–29 in the presence of a spatial carrier frequency

0, the piston ~constant! and tilt ~linear phase! terms
can be separated from the phase function of interest.
We define f~r! to include the tilt as

f~r! ; f0~r! 1 k0 z r. (2)

Equation ~1! then becomes

In~r! 5 A~r! 1 B~r!cos@f0~r! 1 k0 z r 1 Dn#. (3)

By definition, across the measurement domain ~or a
ubdomain used for this calculation! f0~r! contains no
et piston or tilt components.
To facilitate Fourier-domain analysis, the constant

nd the tilt terms are separated from the cosine ar-
ument, and we expand the expression as

In~r! 5 A~r! 1 exp~iDn!C~r!exp~ik0 z r!

1 exp~2iDn!C*~r!exp~2ik0 z r!, (4)
888 APPLIED OPTICS y Vol. 40, No. 17 y 10 June 2001
using the definition

C~r! ; 1
2 B~r!exp@if0~r!#, (5)

where * indicates the complex conjugate.
The Fourier transform of In~r! is in~k!, given by

in~k! 5 a~k! 1 exp~iDn!c~k 2 k0!

1 exp~2iDn!c*~k 1 k0!, (6)

with a~k! and c~k! being the Fourier transforms of
A~r! and C~r!, respectively. Typically dominated by
low-spatial-frequency components, a~k! and c~k! are
both strongly peaked at the zero frequency. Dis-
placement of c~k! by 6k0 separates the modulated
from the stationary intensity components.

The presence of exp~iDn! as a coefficient of c~k 2 k0!
allows us to isolate the global phase positions $Dn% by
examining the complex phase of the Fourier trans-
form at k0 where c~k 2 k0! is maximum:

in~k0! 5 a~k0! 1 exp~iDn!c~0! 1 exp~2iDn!c*~2k0!

(7a)
< exp~iDn!c~0!, (7b)

here c~0! is a complex constant. Therefore, apart
from a constant phase offset,

Dn < tan21@in~k0!#, or Dn < Im$ln@in~k0!#%. (8)

The additional additive phase angle determined by
the complex constant c~0! is the same for each inter-
ferogram and is thus absorbed into the piston term in
the analysis. Calculation of the individual phase-
step values requires only that the Fourier transform
be calculated at one point, the spatial carrier fre-
quency k0. ~This fact can be used to significantly
educe computation times in circumstances in which
0 is known in advance. Assumed constant within a

measurement series, k0 need be measured only once.!
Successful application of this method relies on the

Fourier-domain separability of the three terms of Eq.
~6!, as determined by the spatial-frequency content of
ach. The quality of the approximation ~i.e., the un-
ertainty in the measurement! depends on the rela-
ive magnitudes of c~0!, a~k0!, and c~2k0!, the additive
onstituents of in~k0!. In practice, because a~k! and

c~k! may span the spatial-frequency spectrum, care
must be taken to ensure adequate separation of the
orders in the spatial-frequency domain of measure-
ment. This requirement is also true whenever the
Fourier-transform methods of interferogram analysis
are applied.

Determination of the global phase-step values does
not require use of the entire interferogram in the
calculations. In the presence of closed fringes, large
variation in the fringe density across the measure-
ment domain, or regions of poor signal-to-noise ratio,
a subdomain of the data that satisfies the above re-
quirements can be chosen. By assumption, the
global phase increments introduce the same relative
phase shift to all points in the domain equally; there-
fore use of an appropriate subdomain of the data is
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not problematic. When a subdomain is used, the
spatial carrier frequency of interest becomes that cor-
responding to the subdomain only.

A. Determination of the Spatial Carrier Frequency

When the spatial carrier frequency k0 is unknown,
there are several methods of varying the complexity
available to determine it. One simple method is to
identify the position of peak magnitude in the Fourier
domain, in an area that excludes the central-frequency
components. Use of the fast Fourier transform of an
interferogram from the phase-shifting series ~or a sub-
domain of an interferogram! is one straightforward
way to implement this search. Because of the dis-
cretization of the fast Fourier-transform domain, the
uncertainty in the location of k0 by this method alone
is one-half cycle.

An alternative and more accurate method calcu-
lates the spatial carrier frequency from the tilt in a
measured interferogram ~or subdomain!. Here the

ourier-transform method of interferogram analysis
s applied to a single interferogram or subdomain,
hus recovering the wave-front phase across the do-
ain. This wave front can be calculated coarsely,
ith or without strong filtering in the spatial-

requency domain because only the tilt component is
f interest. Filtering may also simplify the unwrap-
ing procedure that accompanies phase retrieval
ith the Fourier-transform method. The spatial

arrier frequency we seek is proportional to the two-
imensional ~x and y! tilt component of the measured
ave-front phase.

B. Evaluation of Dn

Once the spatial carrier frequency is known ~and it is
ssumed to be the same for each of the interfero-
rams in a phase-shifting series!, then phase-step
etermination proceeds by the calculation of the Fou-
ier transform at k0, in~k0!. Because there is only

one point of interest in the Fourier domain, an expe-
dient discreet calculation that approximates the in-
tegral,

in~k0! 5 * In~r!exp~ik0 z r!dr, (9)

is all that is required. Substituting Eq. ~9! into ap-
proximations ~8! allows us to state the method more
succinctly:

Dn < tan21F* In~r!exp~ik0 z r!drG . (10)

With the global-phase positions $Dn% now solvable
rom the interferograms of a series, these values can
e treated as a priori information in the application of
onventional phase-shifting techniques to recover the
hase at each point in the measurement domain.
he LSM is a well-suited candidate method that ac-
ommodates arbitrary phase values and incorporates
dditional error minimization. The LSM is dis-
ussed in detail in Appendix A.
C. Error Estimation

The uncertainty in phase-shift determination by use
of the spatial-frequency domain depends primarily on
the relative amplitudes of the functions c~k 2 k0!,
c*~k 1 k0!, and a~k!, near k 5 k0. These amplitudes
determine the validity of approximation ~7b!. The
phase of interest Dn is found in the coefficient of c~0!
in Eq. ~7a! and is given by approximations ~8!. The
error magnitude in these approximations cannot be
determined while c~k! and a~k! are unknown. How-
ever, when we examine the behavior of the Fourier-
transform components at k0 within a phase-shifting
series of interferograms, an estimate of the error
magnitude is easily made.

For an individual phase step, the three quantities
c~0!, c*~2k0!, and a~k0! and the Dn-dependent complex
coefficients found in Eq. ~7a! can be regarded as com-
plex scalars, or vectors in the complex plane. If we
assume that all other experimental conditions are
held fixed while the phase-shifting series is recorded,
only the unit-magnitude coefficients of c~k 2 k0! and
c*~k 1 k0! are affected. To separate the one term of
interest from the other two, we define two complex
constants p and q:

p ; exp~iDn!c~0!, (11a)

q ; a~k0! 1 exp~2iDn!c*~2k0!, (11b)

in~k0! 5 p 1 q, (11c)

where p represents the phase of the sidelobe peak
that contains the phase we seek and q is the magni-
ude of the additional components that here contrib-
te to the uncertainty. In most experimental
ituations of interest, it is safe to assume that p .. q
nd that the phases of p and q are independent.
ithin the phase-shifting series, the relative phases

f the three components of Eq. ~7a! are correlated,
elated to each other by factors of exp~iDn!.

Figure 1 shows a representation of p for six 60°
hase steps in the complex plane. Only the result-
nt vectors are measurable. The largest phase error
between p and the measured value of i~k0!# occurs
hen q is perpendicular to p. When q is signifi-

cantly smaller than p, the magnitude of the maxi-
mum error in the measured phase dDn is
approximately

dDn & uquyu pu. (12)

Because dDn depends on the ratio of uqu to upu, we can
achieve error minimization in two ways: increasing
upu or reducing uqu. upu is increased when we ensure
that the calculated carrier frequency occurs at the
peak value of the spatial-frequency-domain sidelobe
c~k 2 k0!. uqu depends on the spatial-frequency con-
ent of c*~k! and a~k!. In general, it can be reduced

only when the spatial carrier frequency is increased
so as to reduce the overlap of the orders in the Fourier
domain. Improvements in the fringe contrast re-
duce the relative magnitude of a~k! and also improve
the ratio of uqu to upu.
10 June 2001 y Vol. 40, No. 17 y APPLIED OPTICS 2889
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Experimentally, the relative magnitudes of q and
p, and hence the phase uncertainty dDn, can be esti-
mated from the data. The variation in the measured
magnitude of in~k0! is related to the magnitudes of q
nd p. The magnitude uin~k0!u varies between the

minimum and the maximum values of up 2 qu. The
maximum and minimum occur when p and q are in
phase or are 180° out of phase, respectively. We
define M0 5 min$uin~k0!u% and M1 5 max$uin~k0!u% for
he measured data:

uqu .
1
2 ~M1 2 M0!. (13)

limitation of this estimation is that, for a small
ampling of phase-shift values, there is no guarantee
hat the maximum and minimum possible values of
n~k0! will be observed. Additional measurements
mprove the estimation.

When Eqs. ~11! and inequality ~12! are combined,
he estimated measurement uncertainty in any given
hase step is bounded by

dDn &
M1 2 M0

M1 1 M0
. (14)

Once the phase-step uncertainty is known, the un-
certainty in the measured phase at each point can be
calculated; it is dependent on the phase-shifting anal-
ysis algorithm that is used. The error propagation
calculation is equivalent to the analysis of the rela-

Fig. 1. Complex-plane phasor representation of the spatial car-
rier frequency peak of the Fourier transform of six hypothetical
interferograms. The resultant, measured amplitude ~indicated
by the gray line segments with small filled circles! is the sum of
three terms, as described by Eq. 7~a!: The largest term is the
first-order peak. It is the phase of this term in each measurement
of the series that reveals the phase-step values we seek.
890 APPLIED OPTICS y Vol. 40, No. 17 y 10 June 2001
tionship between phase-step errors and the rms error
in the measured phase at each point. Brophy17 and
Hibino16 have shown that, for small random step er-
rors with a Gaussian error distribution, the rms
wave-front phase error is proportional to the rms
phase-step error magnitude, and it typically de-
creases with the number N of interferograms by
N21y2. This analysis applies to the present situa-
tion in which the random error occurs in the phase-
step determination rather than the phase-step
implementation.

4. Experimental Demonstration

The point-by-point accuracy of wave-front measure-
ments can be improved by the application of the
FTPSD method. The degree of improvement de-
pends on the rms magnitude of the phase-step errors
in the measurement, the uncertainty in the phase-
step determination, and on the specific phase-shifting
analysis algorithm applied to recover the wave front.
These properties are case specific and may vary even
from one measurement to the next. The following
example illustrates the operation and benefits of the
FTPSD method.

The FTPSD method is now part of the routine data
analysis procedure used with the EUV PSPDI oper-
ating at the Advanced Light Source at Lawrence
Berkeley National Laboratory.30,31 The optics un-
der test are prototype multielement reflective sys-
tems operating at a 13.4-nm wavelength and
designed for EUV lithography research.32 Molybde-
num silicon multilayer coatings provide the mirrors
with over 65% reflectivity near normal incidence.
These systems have demonstrated nearly diffraction-
limited performance with low-frequency system
wave-front quality in the half-nanometer rms
range,33 and the PSPDI has a measured accuracy as
high as 0.04-nm rms within a numerical aperture
~N.A.! of 0.081.31

The demonstration presented here comes from the
wave-front measurement of an EUV 103-

emagnification Schwarzschild objective. The optic
s measured across an off-axis circular subaperture
ith a 0.088 N.A.; an EUV-sensitive CCD camera

ecords the interference pattern. A square domain
ith 256 3 256 measurement points, subtending 60%

of the pupil’s width, is used for this demonstration.
The phase-shifting element is a transmission grating
beam splitter that is translated in plane in the direc-
tion orthogonal to the grating lines. A spatial filter
in the optic’s image plane blocks all but the zeroth
and the first diffracted order from the grating, so only
two orders combine to produce the interference pat-
tern. The measurements are performed in vacuum
at a base pressure of 1027 Torr.

Ten interferograms are recorded with a phase shift
performed between each step. A typical interfero-
gram is shown in Fig. 2. Below the image is a cross
section of the fringe pattern intensity. The target
phase-shifting-step increment was set to one-quarter
cycle. Application of the FTPSD method reveals the
actual phase-step values through inspection of the
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complex amplitude of the interferograms’ Fourier
transforms at the spatial carrier frequency. The
measured phase steps are shown in Figs. 3 and 4.
Figure 3 gives a complex-plane phasor representation
of the spatial carrier frequency Fourier-domain peak

Fig. 2. Detail from a typical interferogram image from a phase-
shifting series recorded with the EUV PSPDI. The test optic is a
molybdenum silicon multilayer-coated Schwarzschild objective op-
erating at a 13.4-nm wavelength. The detail subtends 60% of the
full 0.088 N.A. Below the interferogram is an intensity cross
section taken through the central portion of the interferogram,
indicated by the white lines at the edges. The cross section shows
the high fringe contrast.

Fig. 3. Complex-plane phasor representation of the spatial car-
rier frequency Fourier-domain peak for a phase-shifting series of
ten interferograms. Small amplitude fluctuations and a nonuni-
form step size can be seen. The phase-step values are calculated
directly from the angle, and the uncertainty is estimated from the
variation of the magnitude.
in which the amplitude fluctuations discussed in Sub-
section 3.C can be observed. The phase steps are
calculated directly from the angle, and the uncer-
tainty is estimated from the variation of the magni-
tude. In Fig. 4 both the phase-step values and the
step increments are shown. The uncertainty in the
phase-step determination can be estimated by in-
equality ~14!: Its value is 0.0371 rad, 2.13 deg, or
2.36% of the target quarter-cycle phase-step incre-
ment.

To demonstrate the function of the FTPSD method,
and its effectiveness with a limited number of input
interferograms, the interferogram data were evalu-
ated in two ways. The first four interferograms
were analyzed with the FTPSD method to determine
the phase-step values; this was followed by the LSM
to determine the wave-front phase. Second, we re-
covered the wave-front phase from the first five in-
terferograms using the Hariharan technique.34 In
oth cases, the analysis reveals the wave-front phase
cross the measurement domain.
The wave-front phase maps shown in Fig. 5 reveal

berrations in the system wave front. The Hariha-
an technique is used to analyze the first five inter-
erograms and generate the wave front f1 shown in

Fig. 5~a!. Fringe print-through at twice the fringe
spatial frequency is visible in this data. The FTPSD
method combined with the LSM is applied to the first
four interferograms, and the resultant wave front f2
is shown in Fig. 5~b!. In Fig. 5~c! the difference f1 2
f2 reveals strong fringe print-through at twice the
fundamental fringe frequency, coming primarily
from f1. These two phase-map sections shown are
taken from the central portion of the interferogram
shown in Fig. 2.

Below the phase maps, phase cross sections taken
through the center of the phase maps are shown ~with

Fig. 4. ~Top! Phase-step values and ~Bottom! the step increments
Dn 2 Dn21! are shown for the phase-shifting series of ten inter-
erograms. On both graphs the dashed lines indicate quarter-
ycle phase steps.
10 June 2001 y Vol. 40, No. 17 y APPLIED OPTICS 2891
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a small phase displacement added for clarity!, and
their difference appears at the bottom of Fig. 5.
Across the phase maps shown, the rms wave-front er-
ror magnitudes are nearly identical: 0.05710 waves
~0.7651 nm! in the FTPSD and LSM case and 0.05719
waves ~0.7663 nm! in the Hariharan case. However,
the difference wave front has a rms magnitude of
0.00621 waves ~0.08323 nm!, roughly 11% of the full-
wave-front magnitude. The difference is attributable
primarily to the significant fringe print-through.

5. Conclusion

The method described here uses the complex phase of
the spatial carrier frequency peak in the Fourier
transform of an interferogram to deduce the global
phase increments introduced during phase-shifting
interferometry. Its importance grows with the mag-
nitude of the uncertainty in the phase increments
and with the demand for high-accuracy phase recov-
ery. The method relies on the fact that the phase-
shifting process affects only the constant phase
component of the interference fringe pattern, leaving
the spatially varying components of the optical path
difference unchanged. By use of a large portion of
the available interferometric data, without regard to
the size and shape of the measurement domain, this

Fig. 5. Wave-front phase maps reveal aberrations in the system
wave front. ~a! First five interferograms analyzed with the Hari-

aran technique: f1. ~b! FTPSD method combined with the
LSM, applied to the first four interferograms: f2. Phase-map
sections shown are taken from the center portion of the interfero-
gram of Fig. 2; the gray scale is bounded on the range ~22.274 to
2.216 nm!. ~c! The difference f1 2 f2 reveals strong fringe print-
hrough at twice the fundamental fringe frequency, coming pri-
arily from f1. The difference is displayed on the gray-scale

range ~20.180 to 0.139 nm!. Below ~c! are cross sections of f1 and
2 plotted with a small constant displacement for clarity. Hori-
ontal cross sections are taken from the central region of the wave-
ront data, indicated by horizontal lines at the edges. The
ifference f1 2 f2 is also shown. The rms magnitude of the

difference wave front, attributable primarily to fringe print-
through, is roughly 11% of the full-wave-front magnitudes.
892 APPLIED OPTICS y Vol. 40, No. 17 y 10 June 2001
method can be extremely robust in the presence of
noise, including intensity-level fluctuations, shot
noise, and detector noise.

To be applicable, this method requires that the in-
terferometric data satisfy the same criteria that apply
to analysis with the widely known Fourier-domain
techniques. Specifically, the carrier frequency peak
must be separable from the central frequency in the
Fourier spatial-frequency domain. When this condi-
tion is not met for an entire interferogram data set
~because of closed fringes or other excluding factors!, it
an be met for a subregion of the data on which a
onzero carrier frequency can be identified. In such
ases, the subregion then provides the global phase
ncrement information for the entire interferogram.

In a further effort to improve the accuracy of the
ave-front measurements in the EUV PSPDI, the
TPSD method is routinely applied in conjunction
ith the dual-domain analysis method.35 The dual-

domain method combines the spatial-filtering prop-
erties of the PSPDI with temporal-domain filtering
from phase-shifting analysis to reduce the inter-
ferometer’s susceptibility to noise from scattered
light and other sources.

Appendix A: Least-Squares Method of Phase-Shifting
Analysis

The LSM3,25,26 of phase-shifting analysis has been
described by several authors. Because it is well
suited for use in conjunction with the FTPSD method,
a brief outline of the method is presented here. The
LSM allows the reconstruction of wave-front data in
phase-shifting interferometry when arbitrary global
phase-shifting steps are known. As before, the N
phase positions are defined as a set of N real values
$Dn%. The expression for the individual interfero-
grams, Eq. ~1!, can be expanded into a new set of
coefficients $a0, a1, a2% as follows:

In~x! 5 A~x! 1 B~x!cos@f~x! 1 Dn#

5 a0~x! 1 a1~x!cos Dn 1 a2~x!sin Dn. (A1)

Here the phase steps Dn were separated from the
unknown phase f~x! by the definitions

a0~x! ; A~x!,

a1~x! ; B~x!cos f~x!,

a2~x! ; 2B~x!sin f~x!. (A2)

These are the three unknowns for which we must
solve. Because the phase steps are known a priori,
he sin Di and cos Di terms are simply the scalar

coefficients of the unknown a1~x! and a2~x! in Eqs.
~11! and are identical for all points x in the measure-
ment domain.

When we apply the method of least squares sepa-
rately at each point xi of x, the goal is to minimize the
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error function E ~xi!, defined as

Ei
2 ; E2~ xi!

; (
n51

N

@In~ xi! 2 a0~ xi! 2 a1~ xi!cos Dn

2 a2~ xi!sin Dn#
2. (A3)

The error function is related to the fit variance, where
it is assumed that each measurement point Ii~xi! con-
ains the same uncertainty.

At each xi, we minimize E2~xi! by differentiating
Eq. ~A3! with respect to the three unknowns a0~xi!,

1~xi!, and a2~xi!. The resultant expression can be
written in matrix form:

F N S cos Dn S sin Dn

S cos Dn S cos2 Dn S cos Dn sin Dn

S sin Dn S cos Dn sin Dn S sin2 Dn

G
3 Fa0~ xi!

a1~ xi!
a2~ xi!

G 5 F SIn~ xi!
SIn~ xi!cos Dn

SIn~ xi!sin Dn

G , (A4a)

A~D!a~ xi! 5 b~ xi, D!. (A4b)

ere S is a shorthand notation representing the sum
ver the N measurements, with n as the summation
ndex. The symmetric matrix A~D!, called the cur-

vature matrix, depends only on the known phase
shifts, whereas the vector b~xi, D! contains the mea-
ured interferogram data. A~D! can be calculated
ust once, yet the calculation of b~xi, D! must be done

separately at every point in the measurement do-
main. The solution for the coefficient vector a~xi!
requires inverting A~D! and premultiplying both
sides of Eq. ~A4b!:

a~ xi! 5 A21~D!b~ xi, D!. (A5)

hen there are three or more unique phase steps, the
ows will be independent and A~D! will be invertible.

Once a~xi! is known, the phase f~xi! and modulation
g~xi! are easily found. Over the whole domain x,

f~x! 5 tan21F2a2~x!

a1~x! G , or

f~x! 5 tan21@2a2~x!, a1~x!#. (A6)

Ohyama et al.36 have proposed an alternate deri-
vation of the LSM based on Fourier-domain analysis
of phase shifting with unequal reference phase steps.
They have investigated its susceptibility to several
noise sources, including random phase-shift errors.

The authors are indebted to Patrick Naulleau and
Hector Medecki for many useful discussions on the
development and use of this method. We gratefully
acknowledge the support of the Extreme Ultraviolet
Limited Liability Company, Intel Corporation, Semi-
conductor Research Corporation contract 96-LC-460;
the Defense Advanced Lithography Program, De-
fense Advanced Research Projects Agency; and the
Office of Basic Energy Sciences, U.S. Department of
Energy under contract DE-AC03-76SF00098.
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