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Now in use on x-ray beamlines worldwide, shearing interfer-
ometry and Hartmann wavefront sensing provide effective
feedback for measuring and optimizing high-quality beams.
Conventionally, both approaches spatially modulate the
beam properties (amplitude or phase) using two-tone,
binary patterns, leading to deleterious diffraction effects
that must be mitigated. In shearing, the presence of multiple
diffraction orders affects measurement near boundaries.
In Hartmann, diffraction limits the measurement point
density. We demonstrate that the use of pseudo-gray-scale
halftone patterns in the diffracting elements can improve the
performance of both techniques. © 2021 Optical Society of
America

https://doi.org/10.1364/OL.417408

In recent years, shearing interferometry and Hartmann testing
have emerged as effective and easily implemented wave-
front sensing techniques for short-wavelength applications.
Complementing the creation of high-coherent-flux light
sources, advanced beamline optical systems for soft x ray, ten-
der x ray, and hard x ray photon energies are reaching toward
and achieving diffraction-limited optical performance. This
capability comes largely from improvements in mirror fabrica-
tion and from the advent of adaptive optical elements coupled to
feedback from wavefront sensors.

Shearing is an interferometric approach that uses a diffrac-
tion grating to produce displaced copies of the test wavefront
that overlap at the detection plane [1–4]. The most common
configurations are designed to exploit the Talbot self-imaging
condition, reproducing a high-contrast pattern while revealing
aberrations in the input wavefront.

In the Hartmann test, a grid of holes in an opaque screen pro-
jects isolated, non-interfering beamlets onto the detection plane
[5–8]. Measured displacements show the local wavefront slope
across the beam. While shearing can use amplitude-modulating
or phase-shifting gratings, Hartmann requires high contrast
(i.e., opacity) to achieve a high signal-to-noise ratio. The two
techniques are shown schematically in Fig. 1.

To my knowledge, all reported x ray applications of these
techniques have used binary (i.e., two-tone) amplitude or
phase elements, patterned for shearing as square-wave line
patterns [4,9], cross-gratings [1], or checkerboards [10], and for
Hartmann as open round or square holes [8] in an opaque screen
(see Fig. 2).

(a) (b)

Fig. 1. Schematic representations of (a) single-grating shearing
interferometry and (b) Hartmann wavefront sensing, two complemen-
tary approaches to wavefront measurement. The beam is incident from
the left.

X ray transmission gratings are created with various litho-
graphic patterning techniques. Feature sizes are on the micron to
tens-of-microns scale for extreme ultraviolet, soft x ray and hard
x ray shearing, and Hartmann applications.

In many forms of interferometric measurement, mutually
coherent test and reference beams interfere, and the resultant
fringes reveal path length differences. Shearing, however, com-
pares a test beam with displaced copies of itself. In single-grating
shearing configurations, the presence of multiple displaced
beams, emanating with various amplitudes from the grating’s
diffraction orders, complicates the reconstruction near pupil
boundaries and small features (see Fig. 3).

One implementation uses an image-plane spatial filter to
block all but two beams in each direction [2]. The Ronchi
configuration shifts the beams by half the beam width [11],
creating two-beam interference. However, most single-grating
applications use a small shear magnitude to achieve a near total
overlap of the shifted beams across the aperture.

In the Hartmann case, diffraction causes the beamlets to
spread outward toward their neighbors, degrading measure-
ment or forcing the use of a grid with a larger hole-spacing.
Rotating the orientation of square holes [Fig. 2(f )] mitigates
this overlap to some extent by steering diffracted light between
neighboring beamlets [6].

Here, I propose the use of pseudo-gray-scale, halftone pat-
terns to approximate smooth screen-transmission functions and
reduce the deleterious effects of diffraction. We can reduce the
amplitude of the higher-ordered beams in shearing and narrow
the diffraction-spread of Hartmann beamlets (i.e., sidelobe
suppression) by pattern modulation at finer length scales. This
leaves the fundamental design of the elements intact while
improving their relative performance. With micron-scale
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Fig. 2. Details of common grating types used for shearing wavefront
sensors: (a) linear grating, (b) cross-grating, and (c) checkerboard. The
two tones can modulate amplitude (e.g., opaque and transparent),
phase, or both. Hartmann grids: (d) circular holes, (e) square holes, and
(f ) rotated square holes.

(a) (b) (c)

Fig. 3. Multi-beam overlap in 1D shearing is illustrated for an
annular pupil with a dark defect and three different grating types, as
labeled. The pupil amplitudes shown here sum up to 15 weighted and
shifted diffraction orders. Boundaries and sharp features compromise
wavefront analysis locally. (a) Square-wave amplitude. (b) Sinusoidal
amplitude. (c) Sinusoidalπ -phase.

patterns, sub-micron patterning is well within reach. Halftones
have been used in the fabrication of kinoform diffractive optical
elements [12] and photomask patterns for similar purposes [13].
The benefits of this approach are apparent through spatial and
spatial-frequency descriptions of the devices.

The shearing grating patterns may be described using peri-
odic, piecewise-continuous, two-level transmission functions,
with complex values a and b, and a spatial period, or pitch, L .
For the conventional patterns, we use a rectangle or boxcar func-
tion, assigning 1 to a and 0 to b, and we set an equal period in
both x and y directions. We define a function5(t) over a single
period, with a duty-cycle parameter d ∈ [0, 1] for the linear ratio,
such that with t ∈ [0, L],

5(t)=
{

1, 0≤ t < d L
0, d L ≤ t < L . (1)

Commonly, d = 0.5. The shearing gratings in Fig. 2 can be
described as (a) 5(x ), (b) 5(x )5(y ), and (c) 5(x )⊕5(y ),
where the⊕ symbol represents the XOR operation.

From a spatially uniform incident wave, the variation in the
transmitted field, U0(r), comes only from the screen. With
pattern features much larger than the wavelengths of interest,
and detector distances much greater than the lateral widths
under consideration, the diffraction-order amplitudes are
well described by the Fourier transformation of the field at the
screen, F{U0(r)}. For periodic structures illuminated by a
coherent monochromatic beam, the angular-spectrum reveals
the amplitudes of the various diffracted orders. Partially coher-
ent and spectrally broad extensions can be made from this basic
case.

(a) (b) (c)

Fig. 4. Grating patterns and Fourier spectra for the three conven-
tional grating types in Figs. 2(a)–2(c). Shown are 2× 2-period details
of the grating patterns c (x , y ), with d = 0.5, alongside the first 8× 8
Fourier coefficients, c m,n , calculated from Eq. (3). Within each case,
the absolute values of the coefficients are normalized to c 0,0 (lower-left,
red square). Central portions of the first quadrant are shown. Colors
represent a logarithmic scale.

With k = 2π/L , the patterns c (x , y ) can be decomposed
into complex, double Fourier series, and the Fourier coefficients
can be solved with Dirchelet (periodic) boundary conditions,

c (x , y )=
∞∑

m,n=−∞

cm,ne ikmxe ikny, (2)

cm,n =
1

L2

∫ L

0

∫ L

0
c (x , y )e−ikmx e−ikny dxdy . (3)

These coefficients describe the complex amplitudes of the
interfering beams. When only two beams are present for each
orthogonal shear direction, the only non-zero values are the
paired coefficients {c−1,0, c 1,0} for x , and {c 0,−1, c 0,1} for
y . Multi-beam interference in the unfiltered, single-grating
shearing implementations can be characterized by the series
of coefficient amplitudes. The Fourier spectra of conventional
gratings shown in Fig. 4 reveal the presence of many orders.

Shearing interferograms are commonly analyzed using the
Fourier transform method of fringe pattern analysis, filtering
the spatial-frequency domain to select the interferences among
specific orders [1,14]. However by operating on the intensity
pattern, the filtering nonetheless allows the interaction of other,
different order pairs to affect the resultant measurement. For
example, in the Fourier transform of the measured intensity, the
interaction of the−1st- and 1st-order beams occupies the same
spatial frequency as the interaction of the 3rd- and 5th-order
beams. Similarly, contributions from the interactions of all
pairs of beams for which the index difference is 1 overlap in
the first frequency. Since interferograms are real valued, the
Fourier coefficients form polar-symmetric, equal-valued pairs:
cm,n = c−m,−n .

Limiting the number of interfering beams can improve
single-grating shearing interferometry, and we can shape the
Fourier spectrum to achieve that. In this way, we can view con-
ventional square-wave gratings as coarse approximations to
optimized cases. It is theoretically possible to create two- or
three-beam interferences from a single grating using sinusoidal
transmission functions in amplitude or phase. Modulation of
the form f (x )= 1

2 [1+ sin(2π x/L)] generates only 0th-order
and±1st-order Fourier coefficients. Sinusoidal amplitude mod-
ulations are shown in Fig. 5. (Note thatπ -phase modulation is a
special case where it is possible to extinguish the 0th order [10].)
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Fig. 5. Continuous-tone versions of the gratings of Fig. 4 with
sinusoidal amplitude transmission functions. The coefficient ampli-
tudes show that only the 0th-order and 1st-order beams would be
present in the interferograms.

Recognizing that the grating lines and Hartmann grid holes
used at x ray wavelengths are typically much larger than the
patterning resolution of available lithography techniques, we
can use halftone patterns to approximate the optimal transmis-
sion functions. Commonly seen in newspaper and magazine
image rendering, halftoning is a class of techniques that uses
two brightness levels and fine patterning to approximate
continuously varying intensities, forming a pseudo-gray scale.

There are a number of mathematical approaches to halfton-
ing [15]. Simple methods spatially modulate the density of
uniformly sized points or the sizes of regularly spaced points to
control the open-area fraction across the screen. Selection and
optimization of the halftone mode depends on the characteris-
tics of the lithography and the pattern dimensions and is beyond
the scope of this article.

Figure 6 shows examples of halftoned approximations to
the shearing gratings from Fig. 5, rendered with two different
halftone resolutions: 90 and 60 pixels per period. The halftones
were calculated in the following way. Ideal sinusoidal field-
amplitude patterns were rendered on a grid, downsampled to
30 or 20 samples per period and reduced to 10 gray scale levels,
0 through 9. Each point was then replaced with a 3× 3-pixel,
binary grid, randomly generated with the number of bright
pixels matching the gray scale level. Another approach is to treat
the normalized, downsampled ideal pattern as a probability
distribution and compare it, point-by-point, to uniformly
distributed random values between 0 and 1.

The halftones’ Fourier spectra show us that higher-orders
are present with significantly reduced amplitudes relative to
the conventional gratings in Fig. 4. The higher halftone pixel
density case comes closer to the ideal values from Fig. 5.

Challenges in Hartmann testing can also be addressed with
halftone patterns. Diffraction is an important aspect that
governs the sensitivity of Hartmann wavefront slope measure-
ments. Optimal grids would produce compact beamlets that
do not overlap neighboring measurement points. Square and
circular grid holes produce well-known sinc and Airy diffraction
patterns with lobes and rings that extend outward from the
center. A Gaussian transmission pattern would produce the kind
of spot we seek, so we evaluate halftone approximations to it.
We note that diffraction from non-Gaussian, apodized aper-
ture shapes has been investigated in many contexts, including
sidelobe suppression and beam divergence control [16].

Figure 7 shows diffraction patterns from six ideal and
halftoned apertures. Coherent-wave Fresnel diffraction calcula-
tions [17] are made for 1 nm wavelength and 200 mm distance
from the aperture to the detector plane. The circular aperture

(a) (b) (c)

(d) (e) (f)

Fig. 6. Halftone versions of the optimal gratings of Fig. 5 and their
Fourier spectra. The patterns in (a), (b), and (c) were halftoned to 90
pixels per period. The patterns in (d), (e), and (f ) were halftoned to 60
pixels per period.

Fig. 7. Ideal and halftoned Hartmann apertures and their diffrac-
tion patterns, computed for λ= 1 nm and z= 200 mm. The ideal
apertures are square,w= 8.70 µm; circular, d = 10 µm; and Gaussian
amplitude, exp[−(r /a)2] with a = 7.26 µm. The three halftones
approximate the Gaussian aperture with 144, 72, and 48 pixels
per 10 µm, respectively. The diffracted intensities are shown on a
logarithmic color scale.

has 10 µm diameter, and the sizes of the square and Gaussian
transmission apertures are selected to approximately match
the same full width at half-maximum (FWHM) value. This is
approximately 8.70µm width for the square, and exp[−(r /a)2]
with a = 7.26 µm for the Gaussian.

Three halftone approximations of the Gaussian transmis-
sion are shown with varying pixel densities of 144, 72, and 48
pixels per 10 µm width, respectively. Relative to the smoothly
attenuating Gaussian pattern, the lobes and rings of the square
and circular apertures have significant intensity in the region
from 15 to 40 µm radius. The halftone cases approach the
Gaussian intensity profile with a low-intensity speckle pattern
that decreases with increasing halftone pixel density.

The halftone approach can work for one-dimensional shear-
ing and Hartmann testing as well, where holes are replaced with
lines and the wavefront slope is measured in only one direction.
Such grids are being planned as feedback for adaptive x ray optics
(i.e., bendable mirrors) [4,18]. Figure 8 shows line patterns and
their diffracted intensities. Included are a conventional 10 µm
line; Gaussian amplitude, exp[−(x/a)2] with a = 4.41 µm
(selected to have the same diffracted FWHM); and linear
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Fig. 8. Details of 1D, ideal vertical Hartmann grid lines, and
halftone versions, shown with their intensity patterns. (a) A 10 µm
line. (b) Gaussian. Halftone lines with (c) 192, (d) 48, (e) 32, and
(f ) 24 pixels per 10µm.

halftone approximations of the Gaussian case with varying pixel
density. As before,λ= 1 nm, and z= 200 mm.

One-dimensional halftone patterns were randomly generated
using the Gaussian amplitude as a probability for each pixel to be
open. Mirror-symmetry was imposed to prevent lateral position
variation in the diffraction pattern. Separately, for each of the
four pixel densities, the halftones shown in Fig. 8 were selected
from 5,000 randomly generated cases, minimizing a distance-
weighted-intensity merit function. The halftone diffraction
patterns show significant sidelobe suppression relative to the
conventional line, improving with increased pixel density.

Beyond Gaussian amplitude transmission, it is worth
considering the benefit of a Shack–Hartmann approach in
transmission, turning the lines and holes into focusing diffrac-
tive lenslets, photon sieves [19], or hole arrays [20], including
halftoned versions, especially for cases where the energy band-
width is limited. Arrays of reflective zone plates for this purpose
have been demonstrated at 46.9 nm wavelength [21].

In sum, for shearing interferometry and Hartmann wavefront
sensing, the pseudo-gray-scale halftone approach can optimize
the properties of the diffracted beams and improve the resultant
wavefront measurements. This is especially true when the screen
fabrication supports the creation of arbitrary, pixelated patterns
with sufficient density. Performance improves with higher pixel
densities, up to the point where transmission is reduced by small
feature sizes. That is, while the diffraction properties would be
largely insensitive to the shape of individual pixels, they should
be sufficiently large that transmission is predictable.

Data analysis in both shearing and Hartmann testing mea-
sures small, relative displacements in the spot or line patterns.
Therefore, to avoid undesirable variation from feature to fea-
ture, the same calculated halftone pattern can be applied in a
repeating manner at each feature. In this way, the irregularities
from the halftoning simply repeat periodically and do not
induce spot-to-spot or line-to-line offsets. Otherwise, the inher-
ent variations would have to be treated as systematic errors and
removed in calibration.

Much as the Hartmann strategy of rotated squares helps to
avoid overlap among neighboring beams, there may be addi-
tional ways to engineer the halftone patterns to knock out
certain spatial frequencies or angle ranges in the diffracted light,
protecting adjacent beams from overlap.

The shearing and Hartmann methods are sensitive to spectral
bandwidth and spatial coherence, and such considerations must
be included when developing case-specific designs. I anticipate
that the inclusion of pseudo-gray-scale halftones will not sig-
nificantly change those sensitivities except to reduce speckle
contrast in the presence of partial coherence or finite bandwidth.
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