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ABSTRACT 
 

EUV lithography uses reflective photomasks to print features on a wafer through the formation of an aerial image. The 
aerial image is influenced by the mask’s substrate and pattern roughness and by photon shot noise, which collectively 
affect the line-width on wafer prints, with an impact on local critical dimension uniformity (LCDU). We have used 
SHARP, an actinic mask-imaging microscope, to study line-width roughness (LWR) in aerial images at sub-nanometer 
resolution. We studied the impact of photon density and the illumination partial coherence on recorded images, and 
found that at low coherence settings, the line-width roughness is dominated by photon noise, while at high coherence 
setting, the effect of speckle becomes more prominent, dominating photon noise for exposure levels of 4 photons/nm2 at 
threshold on the mask size. 
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1. INTRODUCTION 
 

As extreme ultraviolet (EUV) lithography pushes lithographic resolution closer to the atomic scale, the specifications on 
critical dimension uniformity (CDU) are becoming more stringent. That is especially true for local CD uniformity 
(LCDU), which is a direct manifestation of the resist line-edge roughness (LER).  

Though often considered within the context of the well-known resolution, LER and sensitivity (RLS) trade-off 
for photoresists, the final LER in printed features (Figure 1, right) arises from chemical processes in the resist, and from 
imperfections of the mask, transferred to the aerial image. These include pattern roughness (Figure 1, left) and the 
influence of speckle (i.e. phase roughness). Phase effects come from mask and multilayer roughness, and can only be 
seen in the actinic imaging. (Figure 1, center). 
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Figure 8. Effect of partial coherence on line-width roughness. (left) overlaid cross-sections for a line from a single measurement 
acquired with a .33 4xNA lens, 40 s exposure time and partial coherence σ = 0.3, σ = 0.6 and σ = 0.8; (right) overlaid line-width 
measurements for many measurements of the same line, for partial coherence σ = 0.3, σ = 0.6 and σ = 0.8.  Lower coherence 
decreased speckle but increased sensitivity to photon noise. 
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There is however a slight advantage to incoherent illumination in that the roughness no longer has definite coherence 
length. In that respect, engineered partial coherence can be used [11] to reduce the sensitivity to some kind of defects 
such as bridging, that would be caused by mask roughness (attributable to a bright speck, akin to a slight phase defect.) 
 Another way to influence the line width is to change the intensity threshold. Since the interpolation is somewhat 
aggressive, with measured line-width variations smaller than the pixel size, changing the threshold by a small amount 
does not necessarily involve different image pixels, resulting in a linear scaling. However, the image is oversampled by a 
factor of 2.7 relative to the Nyquist limit, and the effective pixel size in our experiment is small enough to allow using 
pair-wise distinct interpolation points (figure 9, left.) Our experiment shows that there is no appreciable change in the 
LWR or sensitivity to photon noise while changing the threshold within ten percent: CD and CDU do not affect LWR or 
LCDU measurement (figure 9, right.)  

 
 

Figure 9. Aerial image line-width for various thresholds, with σ = 0.3 and 40 s exposure time. (left) cross-section of the line and 
thresholds; (right) corresponding lines-width along the line. The local roughness is not affected by more than the photon noise. 
 
 

6. POWER SPECTRAL DENSITY  
Comparing the line-width roughness of various lines in the same field allows us to estimate the power spectral density of 
the lines and their dependence on the imaging conditions (figure 10.)  
 

 
 
Figure 10. Power spectral density of the LWR (averaged over 14 contiguous lines), for various exposure times at σ = 0.3 (left) and 
for three different σ values at a long exposure time (right.) All lines are statistically independent and identically distributed (i.i.d.) 
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For longer exposure times and higher partial coherence settings (σ = 0.3), where the photon-noise contribution is small 
compared with the intrinsic LWR, it is possible to discern a sharp roll-off in the PSD at approximately 6 cycles/µm. We 
expect the limited numerical aperture (NA) of the lens to cause a spatial frequency cutoff near asin(4xNA/4)/ λ = 6.11 
cycles/µm. Partial coherence (high σ) has the effect of the decreasing the steepness of the roll-off at higher spatial 
frequencies since there is less optical filtering, while the line width becomes more sensitive to photon-noise (which is not 
band-limited) at higher frequency. 
 
 

7. CONCLUSION 
 

Though resist line-edge roughness is generally governed by chemical processes (chemical shot noise, acidic diffusion), 
the roughness embedded in the aerial image, either as a replication of the mask pattern roughness, replicated surface 
roughness or photon noise, will continue to play a more significant role as pattern dimensions shrink. We have shown 
that it is possible to study the intrinsic aerial image LWR from actinic photo-mask imaging with sub-nanometer 
precision. In the examples presented, the conjunction of the illumination coherence and the intrinsic roughness of the 
mask creates speckle that cause LWR on the order of 5.8 nm on the mask side when studying a nominal CD of 160 nm, 
which can be measured using photon densities in excess of 4 photons/nm2, at the threshold intensity level. In addition, 
we found that although incoherent illumination (i.e. higher σ values) reduces speckle amplitude, a smaller NILS makes 
measurements more sensitive to photon shot noise. The (repeatable) effect of the reproduced mask roughness is replaced 
by the (statistical) influence of the photon noise, and results seems to indicate that increased exposure time does not 
affect the minimum LWR set by speckle formation, reducing the impact of speckle mitigation [11]. We recognize that 
pattern size, threshold level, illumination and NA play a role in the final measured LWR, and require further 
investigation.  
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