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Several wavefront sensing techniques provide direct or indirect measurements of the wavefront error gradient, for
example the Shack–Hartmann sensor, the Foucault knife-edge test, shearing interferometry, and many others. We
developed and tested a noniterative method to reconstruct the wavefront error from its gradient. The method is
based on the projection of the measured gradients onto a basis derived from multiple directional derivatives that
have been combined into an intermediate set of orthogonal functions. To reduce errors that arise from linear
approximations, the intermediate functions can be calculated with parameters that match the known experimen-
tal conditions. This method can be implemented using any convenient set of smooth polynomials defined on a
two-dimensional domain, and it is not computationally intensive. In this paper we describe the method in detail,
provide an example of a possible implementation, and discuss the effect that random noise in the measured
gradient has on the reconstruction. © 2015 Optical Society of America

OCIS codes: (110.7348) Wavefront encoding; (120.3180) Interferometry; (010.7350) Wave-front sensing; (220.4840) Testing;

(120.5050) Phase measurement.
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1. INTRODUCTION

Several wavefront detection techniques are based on measure-
ments of the wavefront gradient, relying on reconstruction
algorithms to calculate the actual wavefront. This is the case
for the lateral shearing interferometer [1], the Hartmann and
Shack–Hartmann sensors [2], the pyramid sensor [3], and the
quantitative knife-edge test [4]. All these methods provide a
direct or indirect measurement of the wavefront gradient and
require a reconstruction algorithm to recover the original
wavefront. In some cases, like the Hartmann and Shack–
Hartmann tests, measurements represent a discretely sampled
version of the continuous wavefront derivative, while in
shearing interferometry, measurement points may be quasi-
continuous, but the underlying mechanism compares physi-
cally shifted copies of the original wavefront. Analysis in the
shearing case is often performed using a linear approximation
of the local derivatives, potentially missing higher-order in-
formation. Most deterministic wavefront reconstruction
algorithms can be classified as modal or zonal methods.
Zonal algorithms [4–6] minimize reconstruction errors lo-
cally, limiting error propagation but making them more sus-
ceptible to noise [7]. Modal algorithms fit measurement data
to global shape functions, such as orthogonal polynomials,
and are commonly based on Zernike or Fourier polynomials
[8–12]. Fitting globally provides reduced susceptibility
to noise and random errors and can deliver results that are
inherently connected to physical parameters (i.e., alignment

degrees of freedom) or aberration terms (defocus, astigma-
tism, coma, etc.) We developed a modal, noise-robust
algorithm that can be used with any set of independent
two-dimensional (2D) polynomials to reconstruct a wave-
front from its gradient on arbitrary pupil shapes. The
reconstruction is obtained by projecting the measured wave-
front derivatives onto an orthonormal basis derived from the
empirically calculated derivatives of the chosen polynomial
set. In this method, orthogonal derivatives (e.g., ∇x and
∇y) are grouped together in pairs, forming a single element,
reminiscent of a domino tile. In a conventional way, projec-
tion coefficients are used to calculate the original wavefront
by means of a transformation matrix that maps the derivatives
back to the original polynomials. One advantage of this
approach is that it does not require specific assumptions or
approximations of the wavefront derivatives but can be used
with the same kind of difference functions (discrete or
continuous) generated by the wavefront sensing method. It
therefore becomes adaptable to the specific details of the
measurement, including the native coordinate grid of the
detector array. In the case of shearing interferometry, for ex-
ample, one would use a polynomial derivative basis
generated with the same discrete shear displacement used
physically in the wavefront measurement. This approach
avoids the potential pitfalls of point-by-point linear approxi-
mation of the derivatives, ensuring higher accuracy in the
reconstruction.
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2. DESCRIPTION OF THE METHOD

The first step is to choose a suitable set of 2D orthogonal
polynomials that can effectively represent the wavefront error
that we want to reconstruct. Let us consider a 2D measurement
domain R and a basis set of orthogonal polynomials fZng. Let
W be the wavefront error to reconstruct and an the coefficients
of the expansion of W on the polynomial basis fZng, so
that

W �
XN
n�0

anZ n: (1)

The measured gradient of W is expressed as the two
orthogonal components �Sx; Sy�:

�Sx; Sy� � ~∇W : (2)

The two orthogonal directions x and y are taken to be parallel
to the derivatives. Here, the derivative itself may be either
continuous or discrete, calculated to match the physical details
of the measurement. For example, in the case of shearing inter-
ferometry, the interfering wavefronts may have an inherent
shear distance that could be equal to some number of pixels
in the discrete measurement domain. In that case, the discrete
derivatives should be calculated from the difference between
displaced versions of W , with a displacement matching the
shear distance. From the original basis, we create a new basis
of paired difference functions to decompose the measured
derivatives:

�Dx; Dy�j � ~∇Z j; (3)

where j > 0. In this definition, each element of this basis is
comprised of two matrices matching the size of Sx and Sy
(see Fig. 1). Note that in many basis definitions the first term,
Z 0, is constant and both of its directional derivatives are zero,
so the series description can skip the 0th element without loss
of generality. To make the projection onto the new basis, we
first orthogonalize and normalize our basis using a modified
Gram–Schmidt (MGS) procedure [13], obtaining a new set
of elements �D̂x ; D̂y�. Note that, in practice, if the wavefront
is defined over a domain R, the derivatives are often

calculated over smaller regions Rx and Ry, and the wavefront
reconstruction can be performed only on R2, the intersection
of Rx and Ry. Now we can project the paired measured wave-
front-error gradient onto the new basis, summing over the
combined domain, R2:

mj �
X
R2

�SxD̂x � SyD̂y�: (4)

The coefficients fmjg define a linear combination of the pol-
ynomial gradient basis terms that approximates the measured
wavefront-error gradient. The approximation is due to the
fact that in any practical implementation of the method, the
gradient basis has a finite number N of elements:

�Sx; Sy� ≃
XN
j�1

mj�D̂x; D̂y�j : (5)

The last step is to remap the coefficients fmjg into the
corresponding polynomial coefficients from the basis used in
Eq. (1). The elements of the transformation matrix arise
from the Gram–Schmidt orthonormalization calculation.
Alternately, we can find them by projecting the derivatives
of the Z polynomials onto the orthonormal basis, obtaining
a matrix of coefficients Pn;j that satisfies

�Dx; Dy�n �
XN
j�1

Pn;j�D̂x ; D̂y�j ; (6)

for each element in the set of the Z polynomials gradients.
Inverting the matrix P enables us to express the elements of
the orthonormal basis in terms of the original derivatives
�Dx; Dy�j:

�D̂x ; D̂y�j �
XN
n�1

P−1
j;n�Dx; Dy�n: (7)

Now, combining Eqs. (1–3), we have a series representation
of the gradient on the basis of the derivatives of Z :

N

y

x

Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

1

-1

0

Fig. 1. Top row shows eight Zernike annular polynomials (excluding the piston term). With the outer radius normalized to 1, the inner radius is
0.2. (Note that the choice of this particular basis set is arbitrary.) Below each term, its derivatives Dy and Dx are shown. The polynomial set Z j and
the derivative set �Dx; Dy�j have been both orthogonalized and scaled for display between −1 and 1.
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~∇W � �Sx; Sy� �
XN
n�1

an�Dx; Dy�n: (8)

Substituting Eqs. (5) and (7) into Eq. (8), we find

XN
j�1

mj

XN
n�1

P−1
j;n�Dx; Dy�n ≃

XN
n�1

an�Dx; Dy�n; (9)

and the expression for the fitting coefficients on Z that produce
the reconstructed wavefront, W :

an ≃
XN
j�1

mjP−1
j;n: (10)

3. PRACTICAL IMPLEMENTATION

To summarize, the necessary steps for a correct implementation
of this reconstruction algorithm are as follows:

1. Select a finite set of 2D polynomials that are expected to
accurately describe the measured wavefront error on an
appropriate pixel grid corresponding to the measurement
domain.

2. Numerically calculate the derivatives of the polynomials
with an algorithm that models the physical measurement
procedure.

3. Trim the edges of the domain to remove edge artifacts,
if necessary. In some cases, like in shearing interferometry, the
derivatives are calculated on a subdomain of the original pupil,
and the reconstructed wavefront is defined on the intersection
of the subdomains of the two derivatives (see Fig. 2).

4. Group the orthogonal derivatives from Steps 2 and 3
into pairs �Dx; Dy�, creating new basis functions �D̂x ; D̂y� that
represent both derivatives in one array.

5. From those paired polynomial derivatives, create a new
basis of orthonormal “derivatives” using an MGS procedure to
facilitate accurate fitting.

6. Calculate the transformation matrix, P, between the
paired derivatives and the corresponding orthogonalized ele-
ments. The elements of P may arise from the MGS procedure,
or they can be calculated from the projection of each derivative
pair onto the new, orthonormalized basis.

7. Project the experimentally measured derivatives onto
the orthonormalized basis to find the coefficients fmjg.

8. Calculate the coefficients of the reconstructed wavefront
fmjg using Eq. (10).

9. The reconstruction accuracy can be evaluated by com-
paring the calculated gradients of the reconstructed wavefront
to the measured derivatives �Sx; Sy� used as input.

4. DEMONSTRATION

To demonstrate the capabilities of the algorithm, we recon-
structed a wavefront generated using a random combination
of the first 32 Zernike annular polynomials on a domain of
256 × 256 pixels. In Fig. 1 we show a nine-element subset
of the polynomial basis we used for the reconstruction and
the corresponding subset of the derivative basis. In this case
the derivatives have been calculated as the finite-difference
function that would arise from a shearing interferogram with
a shear magnitude of 2 pixels. Note that the domain of the
wavefront derivatives is not strictly annular, as shown in
Fig. 2. The reconstruction algorithm will generate a wavefront
that can be extended to the full size of the chosen polynomials,
but the validity of the reconstruction is limited to the domain
of the derivatives. In the absence of noise, we compared the
reconstructed wavefront and the original one over the
derivatives’ domain, and we found that the residual difference
is a floating point round-off error with a magnitude of 10−13

waves peak-to-valley, as shown in Fig. 3. In any practical im-
plementation of the method, when we do not have the original
wavefront available a priori for comparison, the best way to test
the quality of the reconstruction is to differentiate the
reconstructed wavefront and compare the calculated derivatives
with the measured ones, as shown in Fig. 4. Once again, it is
essential to calculate the derivatives using the same method
employed in the computation of the derivatives’ basis.

5. RECONSTRUCTION ERRORS

In principle, the reconstruction algorithm we presented repro-
duces the original wavefront over the R2 domain, with the ex-
ception of the piston term that is not present in the measured
difference data. In practice, the accuracy of the reconstruction is
limited by the finite number of polynomials used and by their
characteristics. Ideally, best results are achieved when using a
polynomial basis whose elements accurately describe the aber-
rations that are expected to be present in the optical system
under investigation [14]. This of course requires some insight
about the wavefront error that is being reconstructed, including

Fig. 2. In shearing interferometry the wavefront derivatives are cal-
culated on a domain R2 defined by the intersection of the sheared
pupil. Without additional information, the wavefront can be recon-
structed only over the intersection domain of the two derivatives.

10-13

0

-10-13

Original Reconstructed Difference
1

-1

0

Fig. 3. Example of a wavefront obtained as a random combination
of the first 32 Zernike annular polynomials and its reconstruction in
the absence of noise. The peak-to-valley value is two waves. The differ-
ence between the original and the reconstructed wavefront is limited
by floating point round-off error to an order of magnitude of 10−13

waves, peak-to-valley.
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the presence of high-spatial-frequency features or imperfections
in the elements under test. To show how the choice of the basis
can affect the reconstruction, we generated a random wavefront
error using the first 24 Chebyshev polynomials restricted to a
circular domain, we calculated its discrete gradient to simulate
measurement, and then we reconstructed it using different
sets of Chebyshev and Zernike polynomials. When the
reconstruction is performed with the same polynomials used
to generate the wavefront, the reconstruction converges quickly
as the number of polynomials reaches 24 and produces the cor-
rect, original wavefront. Not surprisingly, when a different pol-
ynomial basis is used, the reconstruction requires a much larger
number of terms to obtain a good reconstruction, as shown in
Fig. 5. In this specific case, this behavior depends on the fact
that each Chebyshev polynomial expresses spatial frequencies
with x or y periodicity while Zernike polynomials express radial
and angular frequencies.

The wavefront reconstruction accuracy can be affected by
random and systematic errors in the measured derivatives.

Such errors propagate to the reconstructed wavefront and limit
the accuracy of the final result. For example, the way photon
shot noise affects the wavefront reconstruction depends on how
the measured data is processed to obtain the wavefront deriv-
atives. We will show here how Gaussian noise present in the
(measured) wavefront derivatives influences the quality of the
reconstruction. We simulated a random, circular wavefront on
a 64 × 64 pixel domain, using the first 32 Zernike polynomials.
We calculated its discrete derivatives to simulate measurement
and added different levels of Gaussian noise to them to test the
reconstruction. The RMS wavefront reconstruction error, E ,
was calculated by subtracting the computed wavefront from
the known, input wavefront and normalizing the resultant
RMS to that of the input wavefront:

E � RMS�W −W rec�
RMS�W � � RMS�ΔW �

RMS�W � : (11)

To get a statistically meaningful estimate of E , we repeated this
procedure for 1000 random wavefronts and averaged the re-
sults. Figure 6 shows that with a signal-to-noise ratio higher
than 5 we can expect a normalized RMS reconstruction error
E below 0.04. Here the signal-to-noise ratio is defined as the
ratio of the signal mean and the standard deviation of the
Gaussian noise. Systematic errors are another common occur-
rence in the wavefront reconstruction. In many cases, such er-
rors are specific to the method used to obtain the derivatives. In
shearing interferometry, for instance, one source of error comes
from imperfect knowledge of the shear fraction, defined as the
ratio between the shear size and the wavefront diameter. To
quantify the role of this kind of error, we generated a random
wavefront and calculated its discrete derivatives with a fixed
shear fraction. Then we performed the reconstruction assuming
a range of shear fraction values above and below the known
value. Figure 7 shows the calculated error E as a function of
the assumed shear fraction values. At the correct shear fraction
value, the error is zero, as expected. The results of this test dem-
onstrate that uncertainty in the shear fraction can lead to sig-
nificant errors in the reconstructed wavefront. However, in the

0.1

-0.1

0

Original Reconstructed Difference

 y

 x

10-14

0

-10-14

Fig. 4. Comparison between the derivatives of the wavefront shown
in Fig. 3 and the derivatives calculated from the reconstruction. The
peak-to-valley of the value across the domain is 0.2 waves∕pixel. The
difference between the original and the reconstructed derivatives is
limited by floating point round-off error, with an order of magnitude
of 10−14 waves/pixel, peak-to-valley.
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Fig. 5. We generated 200 random wavefronts using the first 24
Chebyshev polynomials, calculated their gradient, and reconstructed
them using Zernike polynomial bases and Chebyshev polynomial
bases with increasing size. The plot shows the average reconstruction
error for the two polynomial types. Using Zernike polynomials, it
takes a much larger basis to obtain an accurate reconstruction.

R
M

S
(

W
) 

/ R
M

S
(W

)

0

0.02

0.04

0.06

0.08

0.10

Signal to noise ratio
0 10 20

Fig. 6. Plot shows the value of E averaged over 1000 randomly
generated wavefronts as a function of the signal to noise ratio in
the measured derivatives. The value of E was calculated using wave-
fronts obtained by the random combination of the first 32 Zernike
polynomials. The error bars in the plot represent a 2σ confidence
interval.
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majority of cases, the shear fraction s can be measured directly
from the CCD camera image as

s � q
2r

; (12)

where r is the radius of the interfering beams and q is their
displacement. In these cases the uncertainty on the shearing
fraction is determined by the image sampling [15] and can
be calculated as

Δs
s
�

��
Δr
r

�
2

�
�
Δq
q

�
2
�
1∕2

: (13)

6. COMPUTATIONAL PERFORMANCE

The method does not rely on any iterative procedure and is
therefore both fast and deterministic. In particular, in the
case of repeated measurements over the same domain, Steps
1 to 5 of the reconstruction procedure (building the basis
and orthonormalizing it) need only to be performed only once,

and each wavefront can be reconstructed with a simple projec-
tion and a matrix operation (Steps 6 and 7). The method is also
capable of handling big wavefront maps without making use of
large amounts of memory [6]. We measured the reconstruction
time on a 2.6 GHz processor in Matlab. We performed the
reconstruction of random wavefronts with bases of different
sizes and element numbers. Figure 8 shows how the
reconstruction time scales quadratically with the number of
elements in the basis and with the wavefront sampling. The
performance of the algorithm is in line with other similar
reconstruction methods [16], and it can be improved by
using a more powerful processor or a parallel computing
architecture.

7. CONCLUSION

We developed a method for the reconstruction of a wavefront
error from its gradient. The method is deterministic and is
based on the projection of the measured gradient onto an
orthonormal basis of polynomials derived from the gradient
of a specific polynomial set. To reconstruct the wavefront,
we map this decomposition back onto the chosen polynomial
basis. This method can be applied with any set of orthogonal
polynomials. This reconstruction technique is based on the
direct projection of the data on an orthonormal basis; therefore
it works correctly regardless of the number of terms used to
generate the test wavefront error and the number of terms con-
sidered in the reconstruction. In other words it is possible to
calculate separately the contribution to the wavefront error of
any element of the chosen basis. The number of polynomials
that should be used in the reconstruction depends on the ac-
curacy needed in the reconstructed wavefront. We tested the
speed of the reconstruction algorithms for different wavefront
sampling and polynomial basis sizes, and we found that it is in
line with other modal reconstruction methods [16]. The
reconstruction time scales quadratically with the size of the
basis and the wavefront sampling. We evaluated the perfor-
mance of this method in the presence of Gaussian noise and
with shear-magnitude uncertainty. Simulations show that
the effect of uncorrelated Gaussian noise in the two compo-
nents of the measured gradient has limited effect on the
reconstruction accuracy. In particular, we found that as long
as the signal-to-noise ratio is higher than 5 we can expect less
than 4% error in the reconstructed wavefront. The systematic
error induced by a shear-magnitude error can be significant: a
shearing fraction error of 0.01 can lead to a wavefront RMS
reconstruction error E of 0.1. We believe that the main advan-
tage of this method is that it can be applied quite generally,
without relying on approximations to the wavefront differences
obtained with any technique or relying on the properties of
particular polynomial sets. In this the proposed approach
is different from other modal reconstruction techniques
like the difference Zernike polynomials fitting method
[10,17,18]. This makes this method both flexible and reliable.
Furthermore, the quality of the result can be directly evaluated
by comparing the measured derivatives to those calculated from
the reconstructed wavefront.

LDRD Program of Lawrence Berkeley National Laboratory
under US Department of Energy (DE-AC02-05CH11231).
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