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Abstract. An approach to image-based EUV aberration metrology using binary mask targets and iterative
model-based solutions to extract both the amplitude and phase components of the aberrated pupil function
is presented. The approach is enabled through previously developed modeling, fitting, and extraction algorithms.
We seek to examine the behavior of pupil amplitude variation in real-optical systems. Optimized target images
were captured under several conditions to fit the resulting pupil responses. Both the amplitude and phase com-
ponents of the pupil function were extracted from a zone-plate-based EUV mask microscope. The pupil ampli-
tude variation was expanded in three different bases: Zernike polynomials, Legendre polynomials, and Hermite
polynomials. It was found that the Zernike polynomials describe pupil amplitude variation most effectively of the
three. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.15.2.023508]
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1 Introduction
For several lithography generations, pupil plane characteri-
zation has played a critical role in image process optimiza-
tion.1–3 This continues into EUV lithography (EUVL) with
an additional importance placed on the understanding of the
influences and variations of aberration behavior during sys-
tem operation.4,5 Interferometric methods have been shown
to have subnanometer accuracy and are the de facto standard
of aberration metrology but require additional optics.6–8

Therefore, such methods can be challenging to implement
during tool use, especially where EUV wavelengths intro-
duce additional constraints. To this end, we have developed
a method to measure optical aberrations of an EUV optical
system using images formed by that system.9–12

In past studies, traditional aberration theory has focused
on studying the pupil phase variation of imaging systems.
This type of variation affects the shape of a point source trav-
eling through the system but does not adequately account for
other types of variation.10,11,13–15 These other types of system
variation are usually assumed to be small enough to not
affect longer wavelength imaging, but they are important
in EUV imaging. For example, even slightly misaligned
lens elements can cause a variation in amplitude across
the pupil.16 More specific to EUVL, the multilayer reflectiv-
ity can vary dramatically as a function of incidence angle.
This introduces a diffraction intensity imbalance in partially
coherent imagery.17 This intensity imbalance can cause
image variation through focus.18,19 Any optical system can
be affected by this type of variation, but these effects become
non-negligible with the tighter tolerances of EUVL systems.
For this reason, we have adopted a more general definition of

system aberration: any variation during imaging which intro-
duces error to the pupil.

We aim to show that an enhanced image-based method is
flexible enough to account for such error through exploration
of both phase and amplitude variation in an EUV imaging
system. This approach is enabled via iterative inverse solu-
tions based on nonlinear least squares fitting of vector aerial
image simulations. We examine the flexibility and criticality
of the method by extracting the pupil phase and amplitude
variation of zone plate lenses on an EUV mask microscope,
the Semiconductor High-NA Actinic Reticle Review Project
(SHARP) at Lawrence Berkeley National Laboratory.20,21 To
study the key characteristics of amplitude variation, the pupil
amplitude function is expanded in three different bases.

2 Principles of Pupil Variation

2.1 Modeling Pupil Variation

The transfer of light through an optical system can be given
as

EQ-TARGET;temp:intralink-;e001;326;233

eEiðu; vÞ ¼ fEoðu; vÞ · Pðu; vÞ; (1)

where eEðu; vÞ represents the frequency domain representa-
tion of the electric field Eðx; yÞ and Pðu; vÞ is the pupil
function.22,23

The pupil function is complex valued and can, therefore,
be expressed in terms of its amplitude and phase as

EQ-TARGET;temp:intralink-;e002;326;145Pðu; vÞ ¼ αðu; vÞei2πWðu;vÞ: (2)

The pupil wavefront, Wðu; vÞ, is defined in units of waves
(or a percentage of the actinic wavelength). These two
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functions, αðu; vÞ andWðu; vÞ, describe the phase difference
between the object electric field and a Gaussian reference
wavefront. In an ideal system, Wðu; vÞ is zero across the
pupil at best focus and increases quadratically across the
pupil with defocus.23,24 Traditionally, an imaging system
is said to be aberrated when Wðu; vÞ is nonzero at best
focus. It is often useful to express Wðu; vÞ in an orthogonal
function expansion, which is most efficiently described by
Zernike polynomials.13,14,24

This choice of a Zernike basis has three benefits: (1) a
small number of terms are sufficient to describe the phase
variation with minimal error, (2) each term has a direct physi-
cal interpretation, and (3) the Zernike polynomials provide a
rotationally invariant basis. Wðu; vÞ expressed as a Zernike
series is given by Eq. (3), where ρ and ϕ are defined in
Eqs. (4) and (5)

EQ-TARGET;temp:intralink-;e003;63;576Wðu; vÞ ¼
X∞
N¼0

aNZNðρ;ϕÞ; (3)

EQ-TARGET;temp:intralink-;e004;63;529ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
; (4)

EQ-TARGET;temp:intralink-;e005;63;501ϕ ¼ arctan

�
v
u

�
: (5)

This description though accounts only for phase variation.
It is customary to assume that any amplitude variation is
small, uniform across the pupil, and negligible. To account
for amplitude variations, we define the amplitude across the
pupil as

EQ-TARGET;temp:intralink-;e006;63;406αðρ;ϕÞ ¼
�
1þ Aðρ;ϕÞ ∶ρ ≤ 1;
0 ∶ρ > 1;

(6)

where the function Aðρ;ϕÞ represents any additional ampli-
tude or reduction in amplitude across the pupil. From here,
analysis of the amplitude variation is similar to that of the
pupil phase function, which is the expansion of Aðρ;ϕÞ in
an orthogonal basis. The most efficient basis for the expan-
sion then needs to be identified. One option is to expand the
entire pupil function, Pðu; vÞ, in Zernike polynomials.25,26

This method requires a number of assumptions though, i.
e., the pupil function must be azimuthally symmetric and
the expansion coefficients become complex valued. Since
we do not want to impose any a priori knowledge about
the system and we want to maintain ease of physical inter-
pretation, we will consider the pupil amplitude and phase
variation separately.

2.2 Properties of Various Orthogonal Bases

In order to determine the required properties of the ideal
basis for EUV system amplitude pupil variation, we will
first look at the basic properties of the three bases.

2.2.1 Zernike polynomials

The Zernike polynomials form a complete set of orthogonal
polar polynomials over the unit circle. The azimuthal and
radial components are generated separately and are given
in Eqs. (7) and (8), respectively. The complete Zernike poly-
nomial is then given by the product of Eqs. (7) and (8), where

n andm are integers with −n < m < n and even n −m.14 The
Zernike radial polynomials are commonly normalized so
that Rm

n ðr ¼ 1Þ ¼ 1 and Rm
n ðr ¼ 0Þ ¼ 0 for m ≠ 0.

EQ-TARGET;temp:intralink-;e007;326;719ΦmðϕÞ ¼
�

sin mϕ;
cos mϕ;

(7)

EQ-TARGET;temp:intralink-;e008;326;676Rm
n ðrÞ ¼

Xðn−mÞ∕2

k¼0

ð−1Þk ðn −mÞ!
k!
�
nþm
2

− k
�
!
�
n−m
2

− k
�
!
rn−2k: (8)

Any function defined over the unit circle, fðr;ϕÞ, can be
expanded in terms of Zernike polynomials by solving the
integral given by Eq. (9).27 The Zernike polynomials are
designed to be rotationally invariant, which means that the
expansion coefficients of a version of f rotated by θ,
given by fðr;ϕ − θÞ, are only modified by a linear azimuthal
phase term.14 The Zernike moments of a rotated function are
therefore given by Eq. (10). This can be seen by rotating the
example image of Fig. 1(a) and then expanding it in Zernike
polynomials. The choice of this image is arbitrary—any
function defined over the unit circle is an equally valid
choice. Some of the resulting Zernike moments are shown
in Fig. 1(b), in which it is shown that the moments vary
only by an azimuthal phase factor27

EQ-TARGET;temp:intralink-;e009;326;470ajnjm ¼ nþ 1

π

Z
2π

ϕ¼0

Z
1

r¼0

fðr;ϕÞRm
n ðrÞe−imϕrdr dϕ; (9)

EQ-TARGET;temp:intralink-;e010;326;427aðθÞjnjm ¼ ajnjm · e−imθ: (10)

Rotational invariance is useful in optical systems because
a lens’ aberrations should be independent of its rotation. For
example, the total amount of third-order astigmatism in a
lens will remain constant through the lens’ rotation, though
the amount of third-order astigmatism 90 deg (Z5) and third-
order astigmatism 45 deg (Z6) contributing to this total third-
order astigmatism may change. In other words, the quantity
a25 þ a26 remains constant as a function of rotation angle,
while a5 and a6 themselves change through rotation. This
gives rise to the sinusoidal behavior of the moments in
Fig. 1(b).

2.2.2 Legendre polynomials

The Legendre polynomials form a complete orthogonal set
over the interval −1 ≤ x ≤ 1. The polynomials can be gen-
erated via the Rodrigues’ formula as follows:28

EQ-TARGET;temp:intralink-;e011;326;214PnðxÞ ¼
1

2nn!
dn

dxn
ðx2 − 1Þn; (11)

where n is a positive integer. These polynomials are normal-
ized so that the values at the edge of the interval are Pnðx ¼
1Þ ¼ 1 and Pnðx ¼ −1Þ ¼ ð−1Þn. Here, we extend the
Legendre polynomials over the two-dimensional (2-D)
Cartesian plane by using all the possible products of the
Legendre polynomials in x and y. The first 36 of these prod-
ucts are given in Table 1. The notation Pð2Þ

N is used to refer to
the N’th product of two Legendre polynomials. This combi-
nation of polynomials is orthogonal over a unit square and
fulfills the orthogonality condition
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Fig. 1 (a) The image that was rotated and expanded in orthonormal bases. The units are
normalized distance so that the function is defined over the unit circle. (b) Zernike expansion coef-
ficients for third-order astigmatism, coma, spherical aberration, and trefoil for the image in part
(a) through rotation.

Table 1 The first 36 Legendre polynomial combinations and Hermite polynomial combinations.

N nx ny Legendre polynomial (P ð2Þ
N ) Hermite polynomial (Hð2Þ

N )

1 0 0 1 1

2 0 1 y 2y

3 1 0 x 2x

4 1 1 xy 4xy

5 0 2 1
2 ð3y2 − 1Þ ð4y2 − 2Þ

6 1 2 x
2 ð3y2 − 1Þ 2xð4y2 − 2Þ

7 2 0 1
2 ð3x2 − 1Þ ð4x2 − 2Þ

8 2 1 y
2 ð3x2 − 1Þ ð4x2 − 2Þ2y

9 2 2 1
4 ð3x2 − 1Þð3y2 − 1Þ ð4x2 − 2Þð4y2 − 2Þ

10 0 3 1
2 ð5y3 − 3yÞ ð8y3 − 12yÞ

11 1 3 x
2 ð5y3 − 3yÞ 2xð8y3 − 12yÞ

12 2 3 1
4 ð3x2 − 1Þð5y3 − 3yÞ ð4x2 − 2Þð8y3 − 12yÞ

13 3 0 1
2 ð5x3 − 3xÞ ð8x3 − 12xÞ

14 3 1 y
2 ð5x3 − 3xÞ ð8x3 − 12xÞ2y

15 3 2 1
4 ð5x3 − 3xÞð3y2 − 1Þ ð8x3 − 12xÞð4y2 − 2Þ

16 3 3 1
4 ð5x3 − 3xÞð5y3 − 3yÞ ð8x3 − 12xÞð8y3 − 12yÞ
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EQ-TARGET;temp:intralink-;e012;63;264CMN

Z
1

x¼−1

Z
1

y¼−1
Pð2Þ
M ðx; yÞPð2Þ

N ðx; yÞdx dy ¼ δMN; (12)

where δMN is the Kronecker delta and CMN is an orthogon-
ality constant.29 This orthogonality condition would still be
met if the set of polynomials was converted to polar coordi-
nates. In the process of converting to polar coordinates, the
limits of integration in Eq. (12) must be adjusted to the unit
circle. We can, therefore, use this basis to express pupil varia-
tion because this set of polynomials is orthogonal over the
unit circle.

Figure 2(a) shows the rotation of Fig. 1(a) and its sub-
sequent expansion in Legendre polynomials. This time the
variation in expansion coefficients is not a simple sinusoid,
and therefore, the Legendre polynomials are not a rotation-
ally invariant basis.

2.2.3 Hermite polynomials

The Hermite polynomials form a complete orthogonal set
over the interval −∞ ≤ x ≤ ∞. The Rodrigues’ formula
for Hermite polynomials is given by Eq. (13).28 There is
no analytic formula for the value Hnðx ¼ �1Þ

EQ-TARGET;temp:intralink-;e013;326;205HnðxÞ ¼ ð−1Þnex2 dn

dxn
e−x

2

: (13)

Again, we extend the basis over the 2-D Cartesian plane
by using all of the possible products of the Hermite polyno-
mials in x and y. The first 36 of these products are shown in
Table 1. The notationHð2Þ

N is used to refer to the N’th product
of two Hermite polynomials. The same orthogonality argu-
ment made for Legendre polynomials holds for Hermite pol-
ynomials. Similarly, like Legendre polynomials, the Hermite
polynomials are not rotationally invariant. This can be seen

Table 1 (Continued).

N nx ny Legendre polynomial (P ð2Þ
N ) Hermite polynomial (Hð2Þ

N )

17 0 4 1
8 ð35y4 − 30y2 þ 3Þ ð16y4 − 48y2 þ 12Þ

18 1 4 x
8 ð35y4 − 30y2 þ 3Þ 2xð16y4 − 48y2 þ 12Þ

19 2 4 1
16 ð3x2 − 1Þð35y4 − 30y2 þ 3Þ ð4x2 − 2Þð16y4 − 48y2 þ 12Þ

20 3 4 1
16 ð5x3 − 3xÞð35y4 − 30y2 þ 3Þ ð8x3 − 12xÞð16y4 − 48y2 þ 12Þ

21 4 0 1
8 ð35x4 − 30x2 þ 3Þ ð16x4 − 48x2 þ 12Þ

22 4 1 y
8 ð35x4 − 30x2 þ 3Þ ð16x4 − 48x2 þ 12Þ2y

23 4 2 1
16 ð35x4 − 30x2 þ 3Þð3y2 − 1Þ ð16x4 − 48x2 þ 12Þð4y2 − 2Þ

24 4 3 1
16 ð35x4 − 30x2 þ 3Þð5y3 − 3yÞ ð16x4 − 48x2 þ 12Þð8y3 − 12yÞ

25 4 4 1
64 ð35x4 − 30x2 þ 3Þð35y4 − 30y2 þ 3Þ ð16x4 − 48x2 þ 12Þð16y4 − 48y2 þ 12Þ

26 0 5 1
8 ð63y5 − 70y3 þ 15yÞ ð32y5 − 160y3 þ 120yÞ

27 1 5 x
8 ð63y5 − 70y3 þ 15yÞ 2xð32y5 − 160y3 þ 120yÞ

28 2 5 1
16 ð3x2 − 1Þð35y4 − ð63y5 − 70y3 þ 15yÞ ð4x2 − 2Þð32y5 − 160y3 þ 120yÞ

29 3 5 1
16 ð5x3 − 3xÞð63y5 − 70y3 þ 15yÞ ð8x3 − 12xÞð32y5 − 160y3 þ 120yÞ

30 4 5 1
64 ð35x4 − 30x2 þ 3Þð63y5 − 70y3 þ 15yÞ ð16x4 − 48x2 þ 12Þð32y5 − 160y3 þ 120yÞ

31 5 0 1
8 ð63x5 − 70x3 þ 15xÞ ð32x5 − 160x3 þ 120xÞ

32 5 1 y
8 ð63x5 − 70x3 þ 15xÞ ð32x5 − 160x3 þ 120xÞ2y

33 5 2 1
16 ð63x5 − 70x3 þ 15xÞð3y2 − 1Þ ð32x5 − 160x3 þ 120xÞð4y2 − 2Þ

34 5 3 1
16 ð63x5 − 70x3 þ 15xÞð5y3 − 3yÞ ð32x5 − 160x3 þ 120xÞð8y3 − 12yÞ

35 5 4 1
64 ð63x5 − 70x3 þ 15xÞð35y4 − 30y2 þ 3Þ ð32x5 − 160x3 þ 120xÞð16y4 − 48y2 þ 12Þ

36 5 5 1
64 ð63x5 − 70x3 þ 15xÞð63y5 − 70y3 þ 15yÞ ð32x5 − 160x3 þ 120xÞð32y5 − 160y3 þ 120yÞ
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again in Fig. 2(b), where Fig. 1(a) was rotated again and
expanded this time in Hermite polynomials.

2.3 Extraction of Pupil Phase Variation

To measure optical aberrations of an EUVL system,
experimental measurements of aberration sensitive patterns
are iteratively fit to vector-based image simulations
(PROLITH30) to determine the wavefront variation, as
shown in Fig. 3. Specifically, we have identified a number
of patterns that are most sensitive to a single aberration type,
as shown in Fig. 4. These targets are optimized for each im-
aging system by balancing the aberration sensitivity and
printability of the target. This target selection procedure is
outlined in detail in Ref. 12. The lines orthogonal to the pat-
tern in Fig. 4 represent the measurement locations. These
types of patterns are present on many masks, so a special

mask is often not necessary. These have been selected pri-
marily so that there is a phase difference between measure-
ment sites if a particular aberration is present. For example,
the response used to estimate astigmatism is the difference in
intensity between vertical and horizontal lines. Using the dif-
ference between structures provides an extremely robust
aberration response.

The image data used to extract the phase variation can be
either in the form of an aerial image or in the form of critical
dimension (CD) measurements. After image data have been
collected, they are iteratively fit to aerial image simulations.
First an ideal wavefront is assumed; then an analytic model is
constructed for each target response. For example, a model is
fit to the vertical–horizontal CD difference through focus and
astigmatism. Finally, the experimental data are fit to the ana-
lytical model to estimate the level of aberration. This process
is repeated for each target to obtain an initial guess for the
wavefront; then the process is repeated from the beginning.
This fitting procedure is explored in further detail in
Refs. 9–12.

2.4 Extraction of Pupil Amplitude Variation

Extraction of amplitude variation follows a similar procedure
to that of phase variation, but is considered separately with a
yet unknown basis. In the case of a fully coherent source, the
diffracted energy from an ideal line-space grating can be
approximated by a series of Bragg terms.23,24 The locations
within the pupil of these orders can be predicted by the gra-
ting equation, Eq. (14). The transfer of this diffracted energy
through an imaging system can then be modeled by sampling
the pupil function as in Eq. (1)

EQ-TARGET;temp:intralink-;e014;326;133ρ ¼ λ

P · NA
: (14)

In the partially coherent case, analytic solutions prove
considerably more difficult to obtain. The partial coherence

Fig. 3 Flowchart of the procedure used to extract pupil phase varia-
tion from image data.

Fig. 2 The image in Fig. 1(a) was again rotated and expanded in Legendre polynomials and Hermite
polynomials. The moments for (a) Legendre polynomials for Pð2Þ

5 , P ð2Þ
7 , P ð2Þ

9 , P ð2Þ
10 and (b) Hermite poly-

nomials for H ð2Þ
5 , Hð2Þ

7 , Hð2Þ
9 , Hð2Þ

10 are plotted as a function of rotation angle.
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of the source can be considered to average the pupil function
in those locations.24,31,32 To reconstruct the pupil amplitude
function Aðu; vÞ, image data are iteratively fit to simulations
to determine the values of the average value of the function
over each diffraction order. This value corresponds to the
source-averaged sample of the pupil amplitude function.
This approach is identical to that used to extract pupil
phase with one complication: the best choice of basis is
unknown, so the source-averaged value of the amplitude
function needs to be determined for each diffraction order
instead of an expansion coefficient.

This pupil sampling process is shown in Fig. 5. The
amplitude function can be reconstructed through interpola-
tion after iteratively fitting samples. Barnes objective analy-
sis is used to interpolate across the pupil between the
samples.33,34 This procedure—commonly used in meteoro-
logical modeling—uses an initial guess for each grid
point, then iteratively refines it based on the error computed
from the known values. The weight of each error is propor-
tional to the inverse of its distance from other points.

To begin the objective analysis, we assume that the ampli-
tude function Aðρ;ϕÞ is Fourier decomposable. Then, a cor-
responding filtered function eAðρ;ϕÞ is constructed as

EQ-TARGET;temp:intralink-;e015;63;374

eAðρ;ϕÞ ¼ Z
2π

θ¼0

Z
∞

r¼0

Aðρþ r;ϕþ θÞWðrÞrdr dθ; (15)

where r and θ are polar coordinates defined with respect to a
point in the pupil (ρ, ϕ), and the filter WðrÞ is given as

EQ-TARGET;temp:intralink-;e016;63;309WðrÞ ¼ 1

4πk
e−r

2∕4k; (16)

where k is an arbitrary shape parameter. Equation (15) can be
written in terms of the known discrete values of A as

EQ-TARGET;temp:intralink-;e017;326;627

eA0ðρ;ϕÞ ¼
P

N
i¼0 Aie−r

2
i ∕4kP

N
i¼0 e

−r2i ∕4k
; (17)

where N is the number of known data points. A corrected
amplitude function can then be computed from the smoothed
error field as

EQ-TARGET;temp:intralink-;e018;326;555

eA1ðρ;ϕÞ ¼ eA0 þ
P

N
i¼0ðAi − eA0;iÞe−r2i ∕4γkP

N
i¼0 e

−r2i ∕4γk
; (18)

where γ is a number chosen to be between zero and one. This
corrected field can be iteratively computed until the error
reaches some prescribed limit. The effects of the choice
of k and γ are discussed in detail in Refs. 33 and 34.
This type of interpolation has the benefit of having high
accuracy even when the samples are disordered and unevenly
spaced. At this step, the amplitude function has been deter-
mined, but further expansion of the interpolated function in
an orthogonal basis is useful. Zernike polynomials have been
chosen in Fig. 5 because of the a priori knowledge that the
original function was composed in this basis.

This method is able to reproduce the original function
with little error from a small number of samples. To illustrate
this, 500 random amplitude functions composed of third-
order Zernike amplitude polynomials (ZA5 − ZA11) were
sampled in ρ ¼ 0.5 and ρ ¼ 0.9 pupil zones with a partially
coherent 0.1σ source. The amplitude functions were ran-
domly generated with a mean range of 19.09% of the
pupil transmission deviation. These functions were then
reconstructed using the scheme proposed in Fig. 5. The
root mean square (RMS) of each initial function varied,
so it would be inappropriate to directly compare the RMS
error (RMSE) from these cases. Instead, the error was nor-
malized to the range of the original function to facilitate com-
parison. The normalized RMSE (NRMSE) (as a percentage
of the range) closely follows a normal distribution with a

Fig. 4 Examples of the binary metrology targets used for inverse wavefront interrogation. The lines nor-
mal to the pattern denote the measurement locations. Each type of aberration is interrogated by a differ-
ence between two structures.

Fig. 5 Flowchart of pupil amplitude reconstruction. First, the pupil function is sampled via the diffracted
spectrum of the targets used for phase interrogation. The values of these samples are determined via
iterative fitting to aerial image simulations. Next, the Barnes analysis is used to interpolate between the
samples to construct the original function. Finally, the interpolated function is expanded in a Fourier–
Zernike series.
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mean of 7.08% and a standard deviation of 1.96%. The
NRMSE distribution of the 500 randomly generated func-
tions is shown in Fig. 6, with and without the use of inter-
polation via Barnes objective analysis. It is clear that the use
of interpolation decreases the mean NRMSE.

Closer inspection of Fig. 5 reveals that the error manifests
itself as a smoothing of the original function. This can be
seen by comparing the extracted series coefficients for
one of the reconstructed functions to the exact coefficient,
Fig. 7(a). The original functions were composed of random
arrangements of third-order Zernike polynomials, but higher-
order terms appear in the reconstructed function. This blur-
ring effect is from the pupil-averaging of the partially coher-
ent source, which can be reduced by increasing both the
source coherence and the number of pupil samples. Still,
the function can be reconstructed with little error with
only the third-order Zernike polynomials used to compose
the original function. This is compared to an expansion in
the first 36 combinations of Cartesian Legendre polynomials
[Fig. 7(b)], where the expansion would require more terms to
reach a similar RMSE. This is verified by plotting the

RMSE after adding each term for both series expansions,
as in Fig. 7(c). In this plot, the RMSE decreases at a faster
rate when the functions are expressed in a Zernike basis.

3 Simulation Study
In order to test the extraction error, 20 synthetic datasets were
created for random wavefronts with both amplitude and
phase aberrations. The average amplitude RMS was
29.9%, and the average phase RMS was 24.9 mλ. The pro-
posed aberration extraction scheme lumps any high-order
aberration terms into a single approximate low-order term.
To investigate the error associated with lumping the high-
order terms into the low-order terms, half of the synthetic
datasets were composed of both third- and fifth-order
Zernike polynomials. The other half is composed of only
third-order Zernike polynomails, but the average wavefront
RMS for each set is identical.

The average RMSE for each wavefront type is shown in
Table 2. The amplitude RMSE was computed from a third-
order Fourier–Zernike series of the interpolated amplitude
function. As expected, the error increases when higher-order

Fig. 6 NRMSE distribution of the reconstructed amplitude functions with and without interpolation via
Barnes objective analysis. The distribution for functions reconstructed without interpolation is semitrans-
parent to show the entirety of both distributions.

Fig. 7 Comparison of an orthogonal function expansion of an interpolated amplitude function in
(a) Zernike polynomials and (b) the first 36 combinations of Cartesian Legendre polynomials. (c) The
RMSE after adding each additional polynomial for both series expansions.
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aberrations are lumped into lower-order terms. However,
the error associated with aberration lumping is not substantial
and remains at tolerable levels. The phase RMSE in Table 2
is comparable to that of past studies of the image-based
method.12

4 Experimental Approach
The SHARP Actinic Reticle Review Project (SHARP) is a
full-field EUV mask microscope at Lawrence Berkeley
National Laboratory (LBNL). A schematic view of the sys-
tem is shown in Fig. 8. SHARP forms a magnified image of
an EUV mask onto a CCD sensor at 13.5-nm wavelength via
interchangeable Fresnel zone plate lenses. The target CDs of
the structures used for this experiment are given in Table 3.
These values were determined by calculating the pitch
required to sample the desired pupil location. Structures
were chosen to sample ρ ¼ 0.5 and ρ ¼ 0.9 pupil zones.

All data were collected using a single 0.25 4 × NA lens on
two separate days. In between these experiments, the system
was modified, then realigned and recalibrated to the original
condition. A 0.1σ circular illuminator was chosen to resem-
ble a coherent source, while introducing a small amount of
pupil averaging to decrease ringing effects. Each target was
imaged through the full depth of focus at the smallest step
available �2.7 μm in steps of 0.3 μm.

Images were analyzed with custom image processing
software written in MATLAB®. SHARP has field-dependent
aberrations, so image sequences were analyzed in similar
field locations where SHARP is designed to be diffraction
limited. After data collection, dark current noise from the
CCD was subtracted from the images, then slight rotation
and alignment errors were corrected. The image was then
interpolated to a higher pixel grid, which also deconvolves

the response of the CCD sensor. The images were collected
at ∼15 nm∕px and interpolated to 5 nm∕px. Finally, the
interpolated region was averaged columnwise and normal-
ized to obtain an approximate aerial image. A white point
and a black point for normalization were chosen such that

Fig. 8 A schematic view of the SHARP microscope at the advanced light source. EUV light at 13.5 nm
from a bending magnet is focused on the photomask. The photomask is imaged on a CCD sensor using
Fresnel zone plate lens.

Table 3 CDs of the metrology targets used for pupil function extrac-
tion on SHARP.

Aberration name Structure type
Target
CD (nm)

Astigmatism 90 deg Vertical/horizontal line/space 30

Astigmatism 45 deg 45 deg ∕135 deg Line/space 30

Coma X Vertical 5-bar 50

Coma Y Horizontal 5-bar 50

Spherical Line through pitch 30

Trefoil X Horizontal T-Bar 35

Trefoil Y Vertical T-Bar 35

Fig. 9 Examples of the SHARP micrographs used for aerial image
measurements to extract the aberrated amplitude and phase
functions.

Table 2 Average RMSE for synthetic datasets composed of third-
order Zernike polynomials (Z 5–Z 11) and both third- and fifth-order
Zernike polynomials (Z 5 − Z 20).

Maximum
aberration
order

Amplitude
RMSE (%)

Phase
RMSE (mλ)

Third order 0.75 0.40

Fifth order 1.45 0.50

J. Micro/Nanolith. MEMS MOEMS 023508-8 Apr–Jun 2016 • Vol. 15(2)

Levinson et al.: Measurement of EUV lithography pupil amplitude and phase variation. . .

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 07/01/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



the intensity-focus volume peaked at the ideal value at best
focus, 1.29 for three-beam imaging.

Images were collected through focus, and the through
focus intensity volume was used to extract the phase and
amplitude functions. Third-order Zernike coefficients and
amplitude function samples were determined from the inten-
sity volume via an image-based method.10,11,35 The ampli-
tude function was then interpolated by Barnes objective
analysis and expanded in Zernike polynomials, Hermite pol-
ynomials, and Legendre polynomials.

5 Imaging Results and Analysis
Examples of the images formed by SHARP for these experi-
ments are given in Fig. 9. A total of 10 iterations (totaling
3.2 h of run-time on a machine with a 3.6-GHz quad-core
Intel i7 processor and 16 GB of RAM) were needed for
the wavefront extraction models to converge on a solution.
The pupil phase variation extracted from the zone plate on
day 1 is given in Fig. 10(a) and on day 2 in Fig. 10(b). The
extracted third-order Zernike coefficients for each day are
provided in Table 4. The wavefront has a phase RMS of

Fig. 10 Pupil phase variation on (a) day 1 and (b) day 2 extracted from the same 0.25 4xNA lens on LBNL
SHARP EUV microscope via the proposed image-based method.

Table 4 Extracted Zernike coefficients and aerial image residual for
SHARP after 10 iterations.

Aberration name
Day 1 extracted

value (mλ)
Day 2 extracted

value (mλ)

Astigmatism 90 deg −11.66 −0.98

Astigmatism 45 deg −2.61 −3.50

Coma X 0.00 0.00

Coma Y 0.00 0.00

Spherical þ42.71 þ2.74

Trefoil X þ35.56 −23.19

Trefoil Y 0.00 0.00

Fig. 11 Interpolated pupil amplitude variation on (a) day 1 and (b) day 2 from the LBNL SHARP EUV
microscope via the proposed image-based method.
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23.4 mλ (0.316 nm) on day 1 and 8.4 mλ (0.113 nm) on
day 2.

The extracted pupil amplitude variation for day 1 is shown
in Fig. 11(a) and for day 2 in Fig. 11(b). There was an ampli-
tude RMS of 11% of the pupil transmission deviation on day
1 and an amplitude RMS of 12% of the pupil transmission
deviation on day 2.

The SHARP pupil amplitude functions were expanded
using Zernike amplitude polynomials, Hermite amplitude
polynomials, and Legendre amplitude polynomials, as
detailed earlier. The expansion coefficients for all three
bases are plotted in Fig. 12 for day 1 and in Fig. 13 for

day 2. As seen in both figures, the Legendre polynomial
coefficients still vary significantly after 36 terms. This is
an indication that Legendre polynomials are an inadequate
choice of basis for pupil amplitude variation. In comparison,
Figs. 12 and 13 suggest that Hermite polynomials may pro-
vide for a better choice of basis for pupil amplitude variation.
The RMSE (with respect to the interpolated amplitude func-
tion) rate of change in Fig. 14 shows this not to be true, how-
ever. As seen, the RMSE decreases with each additional term
at a rate of 2.9% per term, 1.6% per term, and 1.3% per term
for Zernike polynomials, Hermite polynomials, and
Legendre polynomials, respectively, on day 1 (defined as

Fig. 12 Expansion coefficients for the pupil amplitude variation for day 1 expressed in (a) Zernike poly-
nomials, (b) Hermite polynomials, and (c) Legendre polynomials.

Fig. 13 Expansion coefficients for the pupil amplitude variation for day 2 expressed in (a) Zernike poly-
nomials, (b) Hermite polynomials, and (c) Legendre polynomials.
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the slope of the secant line from zero to the fifth term of the
series). Similarly, the RMSE rate of decrease is 2.4% per
term, 0.3% per term, and 0.2% per term for Zernike polyno-
mials, Hermite polynomials, and Legendre polynomials,
respectively, on day 2. The RMSE rate of decrease is higher
for Zernike polynomials than for Hermite and Legendre pol-
ynomials for the data collected on both days. This suggests
that Zernike polynomials describe pupil amplitude variation
more efficiently than the two other bases do because fewer
terms can be used.

6 Conclusions
We have developed a framework for extraction of both the
amplitude and phase components of the pupil function of an
EUVL system. This method uses the images formed by that
system to extract its aberrated pupil function. We have suc-
cessfully demonstrated this technique to extract both compo-
nents of the pupil function for a zone plate on an EUV mask
microscope on two separate occasions. We found an ampli-
tude RMS of 11% and phase RMS of 23.4 mλ on day 1 and
an amplitude RMS of 12% and phase RMS of 8.4 mλ on day
2. It should be noted that the difference in amplitude varia-
tion is within the margin of error for this technique while the
phase is not. The variation in phase RMS between day 1 and
day 2 is likely due to the realignment and recalibration of the
lens between the two days. This is demonstrative of the criti-
cality of in situ aberration monitoring. Although the pupil
amplitude variation did not change between the two days,
it is necessary to adequately describe the pupil of this
EUV imaging system.

The pupil amplitude function was expanded in three
different orthogonal bases: (1) Zernike polynomials,
(2) Legendre polynomials, and (3) Hermite polynomials.
It was found that the Zernike polynomials appear to describe
the pupil amplitude variation the best of these three bases.
This is based on the rate at which the RMSE decreases
when the pupil amplitude variation is decomposed on this
basis. Hermite polynomials offer a similar RMSE decrease
rate but are not rotationally invariant like the Zernike poly-
nomials. The pupil phase variation was only expanded in
Zernike polynomials in which high-order terms were
lumped into a single approximate low-order term. It was
shown that this results in minimal error using this technique.
Discriminating between the low- and high-order terms would
require a different set of metrology targets to highlight the

differences between these terms.12 Future work will study
the effects of pupil amplitude variation described by
Zernike polynomials on image quality, potentially identify
a better basis than Zernike polynomials, and measure both
amplitude and phase pupil variation from resist images.
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