Analysis of illumination coherence properties in
small-source systems such as synchrotrons
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Modern synchrotron beamlines often take the form of critical illumination systems, where an incoherent

source of limited spatial extent is re-imaged to an experimental plane of interest.

Unique constraints of

synchrotron sources and beamlines, however, may preclude the use of the simple Zernike approximation
for calculating the object-image coherence relationship. Here, we perform a rigorous analysis of the

object-image coherence relationship valid for synchrotron beamlines.
aberrations have an effect on the coherence properties.

The analysis shows that beamline
Effects of various low-order aberrations on the

coherence properties are explicitly studied. © 2003 Optical Society of America

OCIS codes:

1. Introduction

Through spatial and spectral filtering, high bright-
ness and high coherent power undulators available at
third generation synchrotron radiation facilities en-
able a variety of experiments that require a high
degree of coherence at short wavelengths.’-¢ Undu-
lator sources in most beamline configurations are re-
garded as incoherent, partly because the electrons in
the synchrotron storage ring have uncorrelated mo-
tion and thus are essentially independent radiators.>
Beamline optics are routinely used to re-image this
spatially confined incoherent source to an experimen-
tal plane of interest. Such a configuration is readily
recognized as a critical illumination system,® where
the beamline acts as the condenser.

Undulator radiation has an intrinsic divergence
angle, known as the central radiation cone angle 0.,
that is characterized by the electron forward-
emitting radiation.” The beamline acceptance an-
gle, i.e., object-side numerical aperture of the
condenser, is usually set to be comparable but
slightly smaller than 6.,. This acceptance angle
sets the effective coherence patch size on the source
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as seen by the condenser system. For the Van
Cittert—Zernike theorem to correctly predict the
spatial-coherence distribution at the image plane of
the condenser, the dimension of the source must be
much greater than this effective coherence patch size,
ie.,

> d g~ 1 L, (1)
2'“- eaccept
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where d ... is the source dimension, d,;,°" is the
effective coherence patch size at the source, \ is the
wavelength, and 0, is the beamline acceptance
angle. However, the distinct characteristics of
third-generation undulator radiation, i.e., the small
vertical source dimension and the constraint on the
size of the beamline acceptance angle, give rise to a
condenser system whose spatial coherence properties
cannot be simplified by the commonly used Zernike
approximation.®8° For the N = 13.4 nm application
considered here, the Gaussian undulator source has a
vertical dimension (20) of dy e = 32 pm and the
beamline acceptance angle is 0,ccept 48 prad,
smaller than the central radiation cone angle of 80
prad. The d ;. °T thus equals to 45 pm, for which
Eq. (1) is clearly not satisfied, and the Zernike ap-
proximation is not applicable.

Here, based on the Huygens—Fresnel principle, the
analysis and numerical evaluation of the spatial co-
herence properties of a representative undulator
beamline are presented, and the results are com-
pared with measurements conducted at Lawrence
Berkeley National Laboratory’s Advanced Light
Source undulator beamline 12. Moreover, the ef-



fects of beamline aberrations on coherence properties
are studied.

2. Rigorous Mutual Coherence Propagation for
Undulator Beamlines

A. Undulator Radiation as an Incoherent Source

Synchrotron-based undulator sources can be approx-
imated as incoherent under the condition that the
coherence width at the source is smaller than the
diffraction-limited resolution of the condenser (i.e.,
the beamline). Alternatively, this could be stated as
requiring the intrinsic divergence of the source to be
larger than the acceptance angle of the beamline.
For the undulator source, the positions and motion of
the electrons in the undulator are uncorrelated. All
point radiators originating from uncorrelated elec-
trons can be treated as independent, and the effective
size of an elemental point radiator can be determined
from the central radiation cone divergence.” The in-
trinsic divergence of the extreme ultraviolet (EUV)
undulator considered here'® is 6., = 80 prad, which
is larger than the beamline acceptance angle 0, of
48 prad. Therefore it is evident that the incoherent
source approximation holds here and the term inco-
herence source is used accordingly in this paper.

B. Zernike Approximation for a Condenser System

The Zernike approximation, first described by F.
Zernike in 1938,° states that the condenser lens pu-
pil, when illuminated by a large incoherent source,
can be regarded as a secondary incoherent source
whose intensity distribution is given by the modulus
square of the pupil function. This approximation,
described again by Born and Wolf® (sec.10.5.2) and
Goodmans® (sec.7.2.2), is commonly used for condens-
ers operating at visible wavelengths.

Starting with an incoherent source placed at the
object plane of the condenser, the Van Cittert—
Zernike theorem®3° can be used to propagate this
incoherent source to the condenser lens pupil, and the
resultant mutual intensity at the condenser lens is
given by a Fourier transform of the source intensity
distribution. The condition under which the
Zernike approximation is valid requires that the in-
coherent source subtends a sufficiently large angle at
the condenser lens such that the coherence width at
the condenser lens is small relative to the pupil di-
ameter. Satisfying this condition, the condenser-
lens pupil can be regarded as a secondary source with
a small coherence area, and the generalized Van
Cittert—Zernike theorem® can then be used to propa-
gate the mutual intensity from the condenser lens
pupil to the image plane of the condenser. The re-
sultant coherence distribution at the image plane of
the condenser is thus determined solely by the mod-
ulus square of the pupil function, and aberrations in
the condenser lens do not affect the coherence distri-
bution at the image plane.

However, when the dimension of the incoherent
source shrinks to the point where the coherence
width at the condenser lens is comparable with the

pupil diameter, the Zernike approximation fails, and
the generalized Van Cittert—Zernike theorem can no
longer be used to propagate the mutual intensity
function from the exit of the condenser lens to the
image plane. Under this small-source condition, a
rigorous mutual coherence propagation based on the
Huygens—Fresnel principle is required.6 As will be
shown here, in this case, the condenser pupil aberra-
tions begin to affect the coherence properties at the
condenser image plane.

C. Undulator Beamline as a Condenser: an Example

Undulator beamline 12, operational at Lawrence
Berkeley National Laboratory’s Advanced Light
Source synchrotron radiation facility, can be viewed
as an incoherent source with a Gaussian intensity
distribution, (o, 0,) = (260 um, 16 pm). The beam-
line essentially acts as a condenser lens with a de-
magnification of 60 and an object-side NA of 48 prad.
The distance z; from the undulator source plane to
the pupil is 16.7 m and the pupil radius ¢ is 0.8 mm.
The wavelength used here is A = 13.4 nm.

Using the Van Cittert—Zernike theorem to propa-
gate radiation from the incoherent source to the lens
pupil, the mutual intensity at the pupil is given by a
Fourier transform of the Gaussian intensity distribu-
tion of the incoherent undulator source. The result-
ant coherence distribution at the pupil is then
Gaussian distributed with rms radii

)\21 )\Zl

b
2mwo, 2mo,

(0.% 0,9 = ( ) ~ (0.14 mm, 2.23 mm).

(2)

Comparing the vertical size of this coherence patch
with the pupil diameter (2a = 1.6 mm), the Zernike
approximation is found not to be applicable and,
therefore, the generalized Van Cittert—Zernike theo-
rem cannot be used to propagate the mutual coher-
ence from the condenser pupil to the image plane.
However, should this invalidity be ignored, and the
Zernike approximation be used for the calculation of
the spatial coherence distribution at the condenser
image plane, the erroneous resultant coherence dis-
tribution would be calculated to be an Airy pattern
with a first null radius s, of 2.84 um. We note that
this radius is approximately equal to the expected
coherence patch size. This oversimplification re-
sults in a discrepancy with the experimentally mea-
sured coherence profile,! which determined the size
of the coherence patch to be 4.4 pm and 6.8 pm in the
horizontal and vertical direction, respectively.

As demonstrated, the generalized Van Cittert—
Zernike theorem does not apply for the undulator
case of interest here, and a more rigorous coherence
analysis is required.

3. Object-lmage Coherence Relation

By use of the Huygens—Fresnel principle,® the
object-image coherence relation, under quasi-
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Fig. 1. Coordinate system.

monochromatic and paraxial approximations, can
be expressed as

+o0

Ji(uy, vy; Uy, Vy) = .[.[.[.[ Jo(&1, 15 &2, M2)

—0

X K(uy, vy; &1, m1)

X K*(us, vg; &, mp)d&dm désdms,
3)

where J; and J, are the mutual intensities at the
image and object plane, respectively. The ampli-
tude spread function K is defined by

K(u, v; € m)
exp{j W+ vz)]exp{j @+ nz)]
\zq Az,

2
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where P(x, y) is the complex pupil function. The
coordinate system used throughout this paper is de-
picted in Fig. 1. Notice that the subscript i for (u;,
v;) and (&, m;) is dropped in Eq. (4) for ease of nota-
tion.

If an incoherent source is placed at the object plane,
then J, can be written as

J, = kI(§, n)3(AE, An) (5)
where I (£, n) is the source intensity distribution, k =
\2/m, and 3(-,) is a 2-dimensional Dirac delta func-

tion.
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In this case, Eq. (3) simplifies to

+oo

Ji(uy, vi; Uy, V) =k ff I(&, M)K(uq, vy; € M)

X K*(ug, vg; €, m)dédm. (6)

The mutual intensity function J; at the image plane
can now be determined by the integration of the
source intensity distribution I, and the two off-
centered [by (uy, vy;) and (u,, vy), respectively]
amplitude-spread functions of the pupil P.

To simplify the notation in Eq. (6), we define

+oo
2T

Gu',v') = ” P(x,y)eXp[ —jg

—o0

X [u'x + v’y]]dxdy. (7

Note that G(u', v’) is essentially the Fourier trans-
form (up to a scaling constant) of the pupil P(x, y),
i.e., the condenser point-spread function (PSF). Eq.
(6) can now be written as

Ji(uy, vy; Uy, v,)
™
K eXP{j T (u12 + Ul2 - uz2 - 022)]
z

2
)\42222 12

+oo

X “ 1§, )Gy, + M§, v, + Mn)
(8)
The mutual intensity can be obtained by numerically

evaluating the above double integral. Equation (8)
and its equivalent Eq. (6) are based on the Huygens—
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Fig. 2. Simulation results for a large (1.6 mm X 1.6 mm) uniform source.
side column) distributions resulting from the various pupil aberrations (a) defocus, (b) astigmatism, (c) coma.
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The coherence distributions

are all essentially Airy patterns as predicted by the Zernike approximation.

Fresnel principle and are valid regardless of the
Zernike approximation. Note here that the mutual
intensity is a function of the four individual coordi-
nates, (14, Uy, Us, Us), not their differences.

The numerical value of G(u’, v’) can be determined
by evaluating the integral in Eq. (7). This integral

can be expressed as weighed summations of various
Bessel functions for the specific aberrations in-
volved.812 Here we explore the effects of defocus/
distortion, astigmatism, and coma on the spatial
coherence distributions at the condenser image
plane.
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pupil and the Gaussian-shaped incoherent source of (o,, 0,,) = (260 wm, 16 um).

4. Numerical Evaluation Results

By use of the object-image coherence relation derived
in Section 3, i.e., Eq. (8), the mutual intensity at the
image plane of the condenser can now be determined
numerically by incorporating the appropriate PSFs
[i.e., G(u',v')]. To test the validity of the numerical
evaluation, a large (1.6 mm X 1.6 mm) uniform in-
tensity incoherent source is used to illuminate the
condenser. Unlike the undulator source, this large
square incoherent source can be shown to satisfy the
Zernike approximation. The resultant intensity
and coherence distributions with various pupil aber-
rations are shown in Fig. 2. As expected under the
Zernike approximation, the various aberrations have
negligible effect on the spatial coherence distribu-
tions, which are all essentially Airy patterns with a
first null radius of 2.8 pm. The intensity distribu-
tions are all relatively uniform, again as expected by
the Zernike approximation. In the case of coma, the
intensity distribution is shifted because the center of
mass of the modulus square of the coma PSF is off
centered.

Next, an actual undulator source with a size that
does not satisfy the Zernike approximation is studied.
The intensity distribution of this incoherent undula-
tor source is Gaussian with (o,, 0,) = (260 pm, 16
pm), given by the undulator beam size at the exit
plane. First, an aberration-free condenser is as-
sumed to determine the effect of a smaller source size.
Figure 3 shows the failure of the Zernike approxima-
tion for small sources, as the coherence distribution
deviates significantly from an Airy pattern.

It was shown above that the size of the incoherent
source has affected the coherence distribution at the
image plane of a critical condenser, and that the apo-
dized pupil function is not the sole determining fac-
tor. Next, the effect of pupil aberrations on the
spatial coherence distribution is investigated. Sev-
eral low-order aberrations will be assumed in the
condenser to demonstrate this effect. The PSFs re-
quired by Eq. (8) are given in Ref. 8 for defocus and
distortion, and in Ref. 12 for astigmatism and coma.
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Figure 4 shows that in the case of a smaller source
size, the effect of condenser aberrations on spatial
coherence cannot be ignored. With 0.5 waves of de-
focus in the condenser, the intensity and coherence
distributions at the condenser-image plane is shown
in Fig. 4(a). Figures 4(b) and 4(c) show the distri-
butions under 0.5 waves of astigmatism and coma,
respectively. For the cases of defocus and astigma-
tism, the high vertical coherence shown in Fig. 4(a)
and 4(b) can be explained by the small vertical source
size. However, in general the two-dimensional co-
herence distributions cannot be treated separately in
terms of vertical and horizontal directions. As dem-
onstrated in the case of coma, shown in Fig. 4(c), the
two-dimensional structure of coma dominates the
spatial coherence distribution in the condenser image
plane, and the coherence distribution cannot be ex-
plained simply by the vertical and horizontal source
size.

Noting that the coherence distribution is not sim-
ply a function of the difference of the coordinates,
instead, it is a function of the four individual coordi-
nates, i.e., (uq, Uy, Uy, Uy). Therefore when display-
ing the coherence distribution, one of the coordinates
is fixed at the origin, i.e., (14, v;) = (0, 0), and the
coherence distribution is obtained as the correlation
factor |p,5| between various points (u5, vs) and the
origin (0, 0).

5. Discussion

As previously demonstrated experimentally,!! the
Zernike approximation has been analytically shown
to not hold for a typical EUV undulator beamline.
In this case the Zernike approximation significantly
underestimates the coherence area and hence the
available coherent power. This can have important
ramifications for experiments requiring coherence.
For example, in speckle dynamics experiments,!3
where coherent power is important but wavefront
quality is typically not, it is evident that the Zernike
approximation would significantly underestimate the
usable beam size and power. We note, however,
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that for EUV point-diffraction interferometry,1415
these issues are less important. In this case the
spatial-filtering pinhole placed at the focus of the
beamline serves the dual purpose of improving the
spatial coherence, and, more importantly, of generat-
ing a highly spherical probe beam. Even if the co-

herence area is larger than predicted, the pinhole size
cannot be increased because doing so would adversely
affect wavefront quality at the same time that it in-
creases the available coherent power.

We note that the results obtained here are valid for
any condenser system that re-images an incoherent
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source to its conjugate plane (critical illumination),
regardless of the Zernike approximation. We have
demonstrated that for a condenser system employing
an EUV undulator as the radiation source, the com-
monly used Zernike approximation is not appropriate
and that numerical spatial coherence propagation
based on the Huygens—Fresnel principle is required.
We note that the validity of the Zernike approxima-
tion is wavelength dependent as seen in Eq. (2).
Based on requiring the coherence patch width to be
1/10 the pupil width or smaller, the Zernike approx-
imation can be shown to be applicable when using
wavelengths of 1 nm or shorter, assuming all else
being equal. Use of the Zernike approximation re-
quires caution, and the validity of the Zernike ap-
proximation for that particular instance has to be
verified before application. We have also shown
that pupil aberrations have a significant effect on the
spatial coherence distributions at the condenser im-
age plane when the Zernike approximation fails.
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