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Abstract. The SHARP high-numerical aperture actinic reticle review project is a synchrotron-based, extreme
ultraviolet (EUV) microscope dedicated to photomask research. SHARP emulates the illumination and imaging
conditions of current EUV lithography scanners and those several generations into the future. An anamorphic
imaging optic with increased mask-side numerical aperture (NA) in the horizontal and increased demagpnification
in the vertical direction has been proposed to overcome limitations of current multilayer coatings and extend EUV
lithography beyond 0.33 NA. Zoneplate lenses with an anamorphic 4 x /8x NA of 0.55 are fabricated and
installed in the SHARP microscope to emulate anamorphic imaging. SHARP’s Fourier synthesis illuminator
with a range of angles exceeding the collected solid angle of the newly designed elliptical zoneplates can pro-
duce arbitrary angular source spectra matched to anamorphic imaging. A target with anamorphic dense features
down to 50-nm critical dimension is fabricated using 40 nm of nickel as the absorber. In a demonstration experi-
ment, anamorphic imaging at 0.55 4 x /8x NA and 6 deg central ray angle (CRA) is compared with conventional
imaging at 0.5 4x NA and 8 deg CRA. A significant contrast loss in horizontal features is observed in the conven-
tional images. The anamorphic images show the same image quality in the horizontal and vertical directions. ©

2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.15.3.033501]
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1 Introduction

The insertion of extreme ultraviolet lithography (EUVL) into
production is likely to happen at the 7-nm logic node, cor-
responding to k; factors well below 0.5 at 0.33 NA.! Feature
sizes at these nodes require the use of resolution enhance-
ment techniques in EUVL from the start, not leaving
much room to further decrease critical dimensions (CD)
without using double patterning.” The next generation of
EUVL at higher NA is under development now and will
be required soon after the insertion of EUVL into production
in order to keep the technology on track down to smaller
feature sizes.

The wafer-side NA of a lithography system may be
increased by either increasing the mask-side NA, increasing
the demagnification of the system, or a combination of the
two. An increased mask-side NA creates an increased angu-
lar extent of the incoming and outgoing light cones.
Separating the cones requires an increased central ray
angle (CRA) at the photomask to avoid overlap.’ In the
plane of incidence, the increased range of angles on the pho-
tomask, offset by an increased CRA, exceeds the angular
bandwidth of current multilayer reflective coatings, thus
reducing image contrast. Perpendicular to the plane of inci-
dence, the range of angles does not exceed the bandwidth of
the multilayer coating. For horizontal features, perpendicular
to the plane of incidence, the illumination is offset by the
central ray angle, and shadowing from the thick absorber
can degrade imaging performance. For vertical features, par-
allel to the plane of incidence, the illumination is centered,
causing less shadowing.

*Address all correspondence to: Markus P. Benk, E-mail: mpbenk@Ibl.gov
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EUYV projection lenses at higher demagnification ratios
beyond 4x show acceptable imaging performance.
However, printing one full field at two times higher demag-
nification either requires a photomask with four times the
surface area, or the field needs to be stitched from four quar-
ter-field exposures. Neither of these options is considered
economically viable.*

Zeiss and ASML have proposed an anamorphic projec-
tion optic with increased mask-side NA perpendicular to
the plane of incidence and increased demagnification in
the plane of incidence.” Such a design avoids high angles
of incidence on the photomask in the plane of incidence
(that would degrade image quality) while preserving the
demagnification perpendicular to the plane of incidence.
This allows stitching one full field on the wafer from two
half-field exposures instead of four quarter fields. The angu-
lar bandwidth of the multilayer is most efficiently used. An
anamorphic projection optic with a wafer-side NA of 0.55 is
discussed in Ref. 6.

Aerial mask imaging tools are currently used in EUV
research and process development and will be required for
EUV production. SHARP is a synchrotron-based, actinic,
EUV mask microscope located at a bending-magnet beam-
line at the Advanced Light Source at Lawrence Berkeley
National Laboratory. Since its commissioning in 2013,
SHARP has contributed to many aspects of EUV mask tech-
nology, including defects,’ their detection® and printability,’
repairs,'” substrate roughness,'” impact of nontelecentric-
ity,!! and multilayer properties.'> An overview of SHARP
can be found in Ref. 13.
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SHARP is designed to emulate imaging in EUV scanners.
The tool records a series of aerial images of a feature or
defect on the photomask, matching the mask-side NA of
the scanner and emulating the angular spectrum of the illu-
mination, including the chief-ray angle and azimuthal rota-
tion of the plane of incidence across the field. The SHARP
aerial image is therefore similar to the wafer print, allowing
the user to assess the characteristics of a feature or defect
with respect to printing on a wafer. Figure 1 shows a com-
parison of (a) a mask-scanning electron microscopic (SEM)
image, (b) SHARP aerial image, and (c) wafer-SEM. The
images are taken from Ref. 14. The SHARP aerial image
closely matches the wafer print. The mask-SEM shows
the defect but does not reveal the extent of the damage to
the multilayer surrounding the visible defect.

SHARP uses a wide range of off-axis Fresnel zoneplate
lenses as imaging optics, matching the mask-side NA of cur-
rent and future generations of EUVL, including the ASML
ADT and NXE 3100 to 3500 scanners. The tool’s standard
zoneplates range from 0.254x NA up to 0.6254x NA.

Fig. 1 Visual comparison of a large defect,' imaged with (a) mask-
SEM, (b) SHARP EUV mask microscope, and (c) wafer-SEM.
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A resolution of 22 nm half-pitch (hp) on the mask side, cor-
responding to 5.5 nm hp on the wafer side in a 4X lithography
system, has been demonstrated for the 0.625 4xX NA lens."” To
emulate the source angular spectrum of the scanner, SHARP
has a fully programmable Fourier synthesis illuminator.'®

SHARP’s flexible design allows it to respond to new devel-
opments in EUVL and to emulate arbitrary technologies under
consideration. This enables research many years into the
future of EUV lithography. Recently, SHARP has been
upgraded to emulate anamorphic imaging, providing a plat-
form for research in this emerging area.

2 Emulation of Anamorphic Imaging

SHARP emulates the source angular spectrum and mask-side
NA values; emulating anamorphic imaging requires the cor-
responding illuminator and elliptical mask-side illumination
solid angle. Since SHARP’s Fourier synthesis illuminator
can reach angles of incidence up to 19 deg off-axis at the
mask (well beyond typical multilayer angular bandpass lim-
its), all anamorphic imaging configurations can be generated.
Figure 2 shows a pixelated cross pole illuminator rendered

Fig. 2 Pixelated cross pole illuminator, matched to (a) the 0.33 4x NA
lens at 6 deg CRA, (b) 0.5 4x NA lens at 8 deg CRA, and (c) anamor-
phic imaging at 0.55 4 x /8x NA and 6 deg CRA in comparison,
recorded with a YAG scintillator camera in SHARP microscope.
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for (a) the 0.334x NA lens at 6 deg CRA, (b) 0.5 4x NA lens
at 8 deg CRA, and (c) anamorphic imaging at 0.55 4 x /8%
NA and 6 deg CRA in comparison. The images are recorded
with a YAG scintillator camera, installed in the tool for mon-
itoring the source angular spectrum. The individual pupil
channels (pixels) can be seen in the high-NA pupils. For
0.33 4x NA, the angular divergence of the synchrotron
beam matches the solid angle of the pupil channels, making
them indistinguishable.

2.1 Zoneplate

Figure 3 shows the apertures (gray) of (a) a 0.33 4x NA
zoneplate at 6 deg CRA, (b) a 0.5 4x NA zoneplate at
8 deg CRA, and (c) a 0.55 4 x /8% NA zoneplate for ana-
morphic imaging at 6 deg CRA in comparison. The differ-
ence in the angular range with respect to the normal ray on
the photomask can be seen. Figure 4 shows the calculated
reflectivity of a typical Mo/Si multilayer on a photomask
at 13.5-nm wavelength as a function of the angle of inci-
dence. The reflectivity curve is almost flat from normal inci-
dence to about 11 deg from normal, then starts rolling off
toward larger angles. The end of the useable angular band-
width at 11 deg is marked in Figs. 3 and 4.

The aperture of a zoneplate for anamorphic imaging is
defined by the intersection of the elliptic cone of a given
NA with a plane, tilted by the CRA (6 deg). The normal dis-
tance from the tip of the cone to the intersecting plane sets
the working distance of the zoneplate. The mask-side coher-
ent resolution of the lens r, = 0.51/NA is approximately
45.5-nm hp in the lateral, high-NA (4X) orientation,
which is the x-direction in the image, and is approximately
91-nm HP in the low-NA (8X) orientation, which is the
y-direction in the image. The mask-side resolution limits
are calculated using the mask-side NA values in the equation.
The zoneplate as a single optical element does not provide
anamorphic imaging, i.e., different magnifications in the x-
and y-direction. Collecting the proper solid angle, however,
captures the characteristics of the anamorphic image, and the
aspect ratio can easily be corrected, scaling the digital image
in one dimension.

The 0.55 4 x /8% NA zoneplate is fabricated in three dif-
ferent working distances: 360, 320, and 275 pm, with
approximate magnifications of 1250%, 1400%, and 1640x.
The lowest magnification corresponds to 5 pixels per reso-
Iution element in the high-NA (4X) orientation. In the low-
NA (8x) orientation, there are twice as many pixels per res-
olution element in the raw image. After scaling the image by
a factor of two, the number of pixels per resolution element
consequently matches in the x- and y-directions. The lowest-
magnification lens produces the brightest picture and offers
the largest working distance. For experiments where higher
sampling is desired, the highest magnification, with 6.5 pix-
els per resolution element, can be used.

Like SHARP’s standard zoneplates, the 0.55 4 X /8x NA
zoneplates are patterned with e-beam lithography and elec-
troplated using 35 nm of gold on a 100-nm silicon nitride
membrane. The SEM images in Fig. 5 show one of the ana-
morphic zoneplates (a) and a detail of its outer zones (b). The
zone pattern is not resolved in Fig. 5(a), causing a moiré
pattern.
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Fig. 3 Apertures of: (a) a 0.33 4x NA zoneplate at 6 deg CRA, (b) 0.5
4x NA zoneplate at 8 deg CRA, and (c) 0.55 4 x /8x NA zoneplate for
anamorphic imaging at 6 deg CRA in comparison and range of angles
of the associated ray cones.

2.2 Target Fabrication

In order to demonstrate anamorphic imaging on the SHARP
microscope, a set of anamorphic test patterns is fabricated.
Three different aspect ratios of the patterns are realized. The
ratios are standard 4x, 4 X /8x for the anamorphic imaging
demonstration, and 4.8 x /7.5%. This latter aspect ratio is
discussed in Ref. 5. Just like 4 X /8X, it allows for stitching
one full field from two half fields using a slightly wider and
shorter region of the photomask and collecting a slightly
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Fig. 4 Calculated reflectivity of a typical multilayer coating on an EUV
photomask at 13.5-nm wavelength as a function of the angle of
incidence.

Fig. 5 SEM-image of: (a) a zoneplate lens with an anamorphic aper-
ture and (b) detail image, showing the outer zones.

different solid angle from the mask. Zoneplates for this
aspect ratio will be included in the next production run.
Aiming at a short production time, the target is patterned in-
house at the CXRO nanofabrication laboratory on a silicon
wafer in a nickel lift-off process instead of using an EUV photo-
mask blank with a tantalum-based absorber. The wafer is
coated with a standard Mo/Si multilayer and ruthenium capping
layer. The wafer is then coated with polymethylmethacrylate
(PMMA) and patterned using electron-beam lithography.
After development, a 2-nm assist layer of chrome is deposited
for adhesion, and 40 nm of nickel are deposited as the absorber.
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Fig. 6 SEM-images of (a) 4x reference pattern, (b) anamorphic
4 x /8%, and (c) 7.5 x /4.8x test patterns.

Chrome and nickel adhere to the clear multilayer. The chrome
and nickel on the resist are lifted off together with the resist
material in an etch step, leaving nickel patterns. The wafer
is then mounted on a mask substrate for loading into
SHARP. The target has patterns down to 50-nm CD.
Figure 6 shows three SEM images of the LBNL logo that
is part of the test patterns. (a) The conventional 4X,
(b) 4x /8, and (c) 4.8/7.5% aspect ratios are shown side
by side.

3 Imaging Results

Different test patterns are imaged using Quasar-45 illumina-
tion with a 45-deg arc angle, an inner ¢ of 0.2, and an outer o
of 0.9. The parameter o, ranging from zero to one, describes
the angular extension of the illumination relative to the NA
of the imaging optic. Figure 7(a) shows a SHARP image of a
test pattern with 50-nm CD (mask scale), recorded with the
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(@)

Fig. 7 (a) SHARP image of anamorphic test pattern with 50-nm CD
(mask scale) and (b) scaled version of the image with corrected mag-
nifications in the x- and y-directions. The image is recorded at a mag-
nification of 1250x using Quasar-45 illumination with a 45-deg arc
angle, an inner ¢ of 0.2, and an outer ¢ of 0.9. The effective magni-
fication in (b) the scaled image is reduced to 625 in the y-direction.
The magnification in the x-direction remains 1250x.

0.55 4 x /8% NA lens. Figure 7(b) shows the same image
scaled to match the difference in magnification in x and y
in the anamorphic image. The scaled image shows the pat-
tern as it is intended on the wafer. Scaling of the image is
shown here in an example. Further anamorphic images
shown in this paper are already scaled and interpolated to
a finer grid.

Images of a test pattern with 50-nm CD (mask scale) are
shown in Fig. 8, comparing (a) anamorphic imaging at 0.55
4 x /8x NA (6 deg CRA) with (b) conventional (isomor-
phic) imaging at 0.5 4x NA (8 deg CRA). In the anamorphic
image, the pattern is resolved, showing the same image qual-
ity on horizontal and vertical features. In the conventional
image, vertical features are resolved, but the image contrast
is reduced on horizontal features. This is due to the angular
range of the collected solid angle exceeding the angular
bandwidth of the multilayer and due to vertical shadowing
from absorber features, as discussed in Sec. 1.

Fifty-nm CD elbows (mask scale) are shown in Fig. 9,
again comparing (a) anamorphic imaging at 0.55 4 X /8%
NA (6 deg CRA) with (b) conventional (isomorphic) imaging
at 0.5 4x NA (8 deg CRA). As in the previous example, the
anamorphic image shows the same image quality in the x- and
y-directions. In the conventional image, only vertical features
are resolved. The high angles of incidence and shadowing
from the absorber lead to loss of contrast on horizontal
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Fig. 8 SHARP aerial images of a test pattern with 50-nm CD (mask
scale), comparing (a) anamorphic imaging at 0.55 4 x /8x NA (6 deg
CRA) with (b) conventional (isomorphic) imaging at 0.5 4x NA (8 deg
CRA).

features. Figure 9(c) shows an SEM image of the 4X
elbow on the target. The SEM shows some small pattern
defects that can be seen in the SHARP image as well.
The pattern quality on the mask is equal in the horizontal
and vertical directions; thus, the imaging nonuniformity
seen in SHARP is wholly attributable to image formation at
wavelength.

Cross-section plots through the horizontal and vertical
features in the elbows from Fig. 9 are shown in Fig. 10.
The cross-sections are averaged over 30 pixels, parallel to
the line directions. The profiles are normalized by defining
the intensity of the clear region around the elbow to be one.
The horizontal and vertical line profiles from (a) the anamor-
phic image are similar, with a modulation of 44%. The cross-
section plot of the vertical features in (b) the conventional
image shows 52% modulation (higher than the modulation
in the anamorphic image), while the modulation on horizon-
tal features is only 19%. A higher average intensity in the
lines and spaces found in the anamorphic image indicates
a higher background level. More scattered light from the
bright-field target reaching the CCD at the lower angular sep-
aration (6 deg CRA) in the anamorphic image is a possible
source of increased background and consequently decreased
modulation compared to the vertical lines in the conventional
image at 8 deg CRA. An increased background is also found
in the large absorber feature (the number five) in the anamor-
phic image from Fig. 8.

The SHARP images, shown in Fig. 9, are taken from a
through-focus series recorded by varying the object distance
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(b)

— 500 Nm

Fig.9 SHARP aerial images of 50-nm CD elbows (mask scale), com-
paring (a) anamorphic imaging at 0.55 4 x /8x NA (6 deg CRA) with
(b) conventional imaging at 0.5 4x NA (8 deg CRA), and (c) SEM-
image of the 4x elbow on the target.

in 300-nm steps. Figure 11 shows plots of the modulation in
the elbows through-focus, comparing (a) anamorphic and
(b) conventional imaging. The evolution of the images
through-focus is shown in Fig. 12. Aside from the overall
lower modulation on horizontal features, the conventional
series shows the same through-focus characteristics in the
x- and y-directions. On vertical features, the modulation
through-focus in the anamorphic data compares well to
the characteristics of the conventional series. For horizontal
features, the modulation curve of the anamorphic data is
almost flat within a range of 2.4 um. The depth of field
exceeds the focal range of £1.2 ym covered in the series.

J. Micro/Nanolith. MEMS MOEMS

033501-6

08l ]
0.55 4x/8x NA —— Vertical

o6k Horizontal
2
‘@
[
_9
£
©
S
©
E
o
zZ

00 [ 1 1 1 1 1 1 1

-0.3 -0.2 -01 0.0 0.1 0.2 0.3
x[um]
(a)
FrT T T T T T T
0.8+ B
0.5 4x NA — Vertical
------------- Horizontal

Normalized intensity

03 -02 -01 00 01 02 03
x[um]

(b)

Fig. 10 Cross-section of the horizontal and vertical features of the 50-
nm mask CD elbows from Fig. 9, comparing (a) anamorphic imaging
at 0.55 4 x /8x NA (6 deg CRA) with (b) conventional imaging at 0.5
4x NA (8x CRA).

0.0 L 1 1 1

In EUV scanners, the depth of focus (on the wafer side) is
the primary concern. Since the exit pupil is circular, depth of
focus is expected to be uniform in an anamorphic scanner. It
is smaller than the depth of field by a ratio of the demagni-
fication squared (i.e., a factor of 16 for an isomorphic 4X
system). Accordingly, in an anamorphic 4 X /8X system,
the depth of field (on the mask side) is expected to be 16
times larger for vertical features and 64 times larger for hori-
zontal features.

SHARP image data captures the mask-side through-focus
behavior of an anamorphic system. As in isomorphic mode,
for horizontal and vertical features, depth of focus (on the
wafer side) can be calculated from the measured, mask-
side depth of field by applying the corresponding factors.
For two-dimensional patterns, the depth of focus on the
wafer side is not simply obtained from SHARP image
data. Further research is required to address this.

4 Summary

SHARP is an actinic EUV mask-imaging microscope tar-
geted at a wide range of applications in EUV photomask
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Fig. 11 Modulation of horizontal and vertical features through-focus
in the (a) anamorphic and (b) conventional series of SHARP images,
shown in Fig. 12.

research and development. The tool is designed to emulate
imaging in EUV lithography scanners. The generation of
EUVL succeeding the 0.33 NA systems will likely employ
anamorphic imaging with different horizontal and vertical
demagnification. SHARP is upgraded to emulate scanners
with anamorphic projection optics.

Zoneplate lenses with an anamorphic 4 X /8x NA of 0.55
are fabricated and installed in the tool. SHARP’s Fourier
synthesis illuminator readily produces source angular spectra
matched to anamorphic imaging. Anamorphic test patterns
down to 50-nm mask CD dense features are written on a mul-
tilayer-coated silicon wafer using 40 nm of nickel as the
absorber material.

Test patterns are imaged in a demonstration experiment,
comparing anamorphic imaging at 0.55 4 x /8x NA and
6 deg CRA to conventional imaging at 0.5 4x NA and
8 deg CRA. While the anamorphic images show the same
image quality in the horizontal and vertical directions, con-
ventional imaging suffers from a significant horizontal fea-
ture contrast loss that can be attributed to the limited angular
bandwidth of the multilayer coating and shadowing from
absorber features. The mask-side through-focus behavior
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Fig. 12 Through-focus series of SHARP images, comparing through-
focus behavior in (a) anamorphic imaging at 0.55 4 x /8% NA (6 deg
CRA) with (b) conventional imaging at 0.5 4x NA (8 deg CRA).

of anamorphic and conventional EUV-imaging systems is
discussed. SHARP image data captures the mask-side
through-focus behavior of an anamorphic system. The factor
two difference between the vertical and horizontal mask-side
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NA causes the depth of field to be four times larger for hori-
zontal features than for vertical features.

The SHARP microscope provides a versatile platform for
research related to anamorphic imaging in EUV lithography
today. The consideration of various demagnifications, pupil
aspect ratios, and illumination patterns can be used to guide
progress in this area without the extensive modifications
that all-reflective actinic mask-imaging microscopes could
require.
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